Energy Exchange

New BLM Proposals For Large Oil And Gas Fields Ignite Wyoming Air Quality Concerns

Wyoming is already one of the country’s top natural gas producers. And large new developments under review by the

Source: Anne Nowell

U.S. Bureau of Land Management totaling more than 25,000 new wells in the coming years could further solidify Wyoming’s status as a national energy leader.

But what will this leadership look like? Will this series of development projects lead to worsening air quality or set an example for safe, responsible development?

The first of these, the Continental Divide – Creston Project, is alone one of the largest onshore natural gas developments ever proposed on federal lands in the United States. This enormous development slated for the Wamsutter area of south-central Wyoming, includes drilling nearly 9,000 new natural gas wells across 1,672 square miles (or 1.1 million acres) of public and private lands — an area a bit larger than the state of Rhode Island. The well-known Jonah Field in western Wyoming, by comparison, covers about 21,000 acres and includes about 3,500 wells.

The scale, concentration and vicinity of new wells proposed by the CD-C project are fueling concern for regional air quality issues. If managed improperly, this project could lead to more unhealthy air for local residents and workers.

Unhealthy air, as a result of oil and gas development, has been a particular issue in Pinedale, a community just northwest of the CD-C proposal in Wyoming’s Upper Green River Basin. The past few winters have earned the area unwanted national attention for its U.S. Environmental Protection Agency nonattainment designation for ground-level ozone pollution — one of the first non-urban areas to report such high levels of smog. Read More »

Also posted in BLM Methane, Methane, Natural Gas / Tagged | Comments are closed

Study Intends To Determine Methane Leakage Associated With A Growing Natural Gas Transportation Sector

This blog post was written by Jason Mathers, Senior Manager of EDF’s Corporate Partnerships Program.

Source: Waste Management

The use of natural gas to power our nation’s freight fleet vehicles is a hot topic in these days of rising diesel and falling natural gas prices. There are several reasons to be excited about this opportunity, including operating cost savings, use of a domestic fuel source, and the potential for a reduction in greenhouse gas (GHG) emissions compared to diesel heavy-duty trucks. However, significant concerns remain with the development of new gas supplies, including the threat of fugitive methane emissions from natural gas vehicles and the fuel supply chain.

Methane is the main ingredient in natural gas and a GHG pollutant many times more potent than carbon dioxide (CO2), the principal contributor to man-made climate change. Even small amounts of methane leakage across the natural gas supply chain can undermine the climate benefit of switching to natural gas from other fossil fuels for some period of time.

In a paper published last year, EDF scientists and other leading researchers examined the impact of potential fugitive emissions on the climate benefits of a switch from diesel to natural gas heavy-duty trucks. The study found that, according to the best available data, methane leak rates would need to be below 1% of gas produced in order to ensure that switching from diesel to natural gas produces climate benefits at all points in time. They also found that – using the EPA leakage rate estimates at that time – converting a fleet of heavy duty diesel vehicles to natural gas would result in increased climate warming for more than 250 years before any climate benefits were achieved.

EDF is working with leading researchers and companies in a series of studies designed to better understand and characterize the methane leak rate across the natural gas supply chain. The studies will take direct measurements at various points across the production, gathering and processing, long distance transmission and storage, local distribution, and transportation. The first study, led by researchers at the University of Texas, is measuring emissions from natural gas production. Results will be released in the coming months. Read More »

Also posted in Methane, Natural Gas / Tagged , | Read 1 Response

Do We Need Breakthroughs Or A Simple “Carbon Diet?”

Over the weekend, The New Republic published an interview with President Obama, where he noted the following: “On climate change, it’s a daunting task. But we know what releases carbon into the atmosphere, and we have tools right now that would start scaling that back, although we’d still need some big technological breakthrough.”  How accurate is the call for breakthroughs and what do we really need?

First, let’s look at where we don’t need breakthroughs, but instead more deployment – energy efficiency, of course, being Exhibit A.  Creative financing, such as on-bill repayment (OBR), at scale can speed up deployment here.  Similarly, unlocking clean energy to reduce carbon emissions from the electricity sector hinges on affordability.  Wind energy is already competitive with fossil fuels, in large part because the cost of wind energy has come down around 65 percent in the last 20 years, according to the National Renewable Energy Laboratory (yes, declining natural gas prices provide new competition, but EIA projects that natural gas prices will begin to increase in 2018, and wind power purchase agreements are signed for around 20 years at a fixed price).  Residential solar is verging on the tipping point for “grid parity,” or the point at which a source of power becomes cost competitive with other sources.  Bell Labs first introduced solar cells in the 1950s.  Environment California’s Research & Policy Center recently reported that they expect solar to reach grid parity in mid-2014 to 2016 at the outset. 

Of course, progress in lowering costs and increasing efficiency comes on the heels of many smaller innovations.  For example, innovations in materials science underlie many of the most promising technology evolutions, such as the role of carbon fiber as a basic raw material for wind turbine blades or the use of Gallium Arsenide wafers to reduce manufacturing costs for solar cells.  But, nonetheless, given our country’s strength in materials science (think of our leadership with companies like Dow, Dupont and 3M), such innovations seem imminently feasible and in my mind don’t require a major “breakthrough.” 

We’ve also delivered numerous hardware and software innovations to transform our electric grid into a more resilient, smart, “green” grid.  Even carbon capture and storage, to some a high stakes technology bet, is actually just a new configuration or application of engineering equipment we have installed and used for decades, such as heat exchangers, chillers, absorbers, pumps and compressors.

Where would I wave a wand for a breakthrough?  A cheap, reliable and efficient energy storage system wouldn’t hurt, one that replaces the clunky compressed air systems or the size limitations of batteries.  But, overall, the declining cost curves for clean energy solutions, due to innovations large and small, tell us an important story:  solving the climate crises is not unaffordable or necessarily a drag on our recovering economy as many fear.  It is certainly not infeasible nor hinging on that one great technological breakthrough. 

We need non-technological breakthroughs.  Like the new head of the World Bank, Dr. Jim Kim, who in Davos described wanting to make “everything the Bank does aligned with the effort to slow down climate change.”  And it is certainly cheaper than repeating the $50 billion recovery price tags that we might face time and again as Superstorm Sandy becomes the new normal. 

Americans love the quick technical fix.  But, today we have affordable answers right in front of us, it’s the willpower we may be lacking.  So, just as most of us believe that rather than wait for a dieting breakthrough, the best answer to weight loss is reduced consumption and more exercise – we need to go on a carbon diet.  Our economic and environmental health depend on it.

Also posted in Demand Response, Energy Efficiency, Grid Modernization, On-bill repayment, Washington, DC / Comments are closed

More To Come On Methane…

Concerns around the impacts of methane emissions have reemerged in headlines, with the release of a methane leakage study about Boston. Published in the journal of Environmental Pollution a couple weeks ago, researchers from Boston University and Duke University measured atmospheric methane concentrations leaking from natural gas pipelines in Boston many of which are over a hundred years old. Another report issued last week by researchers at the Massachusetts Institute of Technology (published in Environmental Research Letters) looked at the impact of shale gas production on greenhouse gas emissions.

When talking about harmful greenhouse gases, carbon dioxide (CO2) usually gets most of the attention. Yet methane, the main ingredient in natural gas, is a short-lived greenhouse gas many times more potent than CO2 – or around 72 times more potent over a 20-year time frame. Stakes are high for the scientific community to fully understand the implications of methane leakage rates. These reports help elevate the issue that methane leakage matters to the climate and air quality, but this is only part of the story.

Methane is potentially leaking from the entire natural gas supply chain — from wells, pipelines and storage facilities — and no one knows precisely how much is leaking and where the leaks are stemming from. Some reports estimate the total methane leakage rate occurring during natural gas production, transmission and distribution to range anywhere from 1 to 7.9 percent. At the same time, the data that the Environmental Protection Agency (EPA) and everyone else rely on were collected 20 or more years ago.

A challenge for understanding the distribution of methane concentration data in Boston is that no one knows how to interpret the data yet. Maps of methane concentrations in the urban environment can be spurious. They may look scary, but are they? This and many other tough scientific questions still need to be answered, we are very early in the process of understanding how much methane is leaking and from where. The scientific community at large, including EDF and the authors of the Boston study, are committed to collecting the data necessary to addressing these concerns and to understanding the true climate impact of methane emissions.

EDF is working with leading academic researchers and industry leaders to conduct scientifically rigorous measurements of quantitative emissions across the natural gas supply chain from well to the end user. We are developing the methodologies where necessary to move past a ‘he said, she said’ conversation to one focused on data characterizing leak rates. The critical next step for us in using the increasingly robust data gathered from new innovative technologies is to precipitate a clear enough understanding of where the leaks are in the supply chain to catalyze a constructive conversation about what new policies and industry practices will be required to minimize methane leakage.

The first EDF fugitive methane report, focused on field measurements made at natural gas production sites, will be completed early next year under the leadership of the University of Texas Austin. EDF and our partners are using a diverse array of measurement techniques to characterize leak rates. We are also working to make basin-wide measurements within areas of natural gas production. Over the course of 2013 and early 2014, studies of emissions at other key components in the supply chain, including the local distribution system, will be completed and the data and conclusions released to the public.

EDF is actively campaigning to ensure that fugitive methane emissions from the natural gas industry are less than 1 percent of production in order to ensure that the climate benefits of natural gas are maximized. We see development of innovative, cost effective and accurate methane detection technologies and procedures as a necessary part of minimizing leak rates. Our view is that minimizing methane leakage is an important enough issue that we need to take the time to establish a scientific understanding of the underlying issues and by doing so defining effective well-targeted actions.

Also posted in Methane, Natural Gas / Read 1 Response

ALEC & Heartland: Freedom Fighters?

As we approach a new Congress, and a new Legislative Session here in Texas, the Heartland Institute and their pal the American Legislative Exchange Council (ALEC) are gearing up to reverse state renewable energy mandates across the country.

This comes as no surprise as ALEC has a reputation for supporting unpopular agendas, like current legislation it is pushing around the country that would mandate the teaching of climate change denial in public school systems. So while many Americans from differing political affiliations support an increase in renewables – a nearly unanimous 92% of voters, including 84% of Republicans – it seems fitting that ALEC would be on the opposing side.

While the American Wind Energy Association (AWEA) and the Solar Energy Industry Association (SEIA) are both members of ALEC, I wonder if they will join the ranks of Proctor & Gamble, Coca-Cola, Kraft Foods and a whole host of companies who have since parted ways with the “shadowy right-wing front group.”

And it’s not just ALEC that runs off its members. As we wrote back in April, GM announced they were pulling their funding from the Heartland Institute, citing Heartland’s climate change denial. Of course, weeks later Heartland doubled down on their denial with a series of billboards comparing climate change admitters to the likes of Ted Kaczynski, Charles Manson and Osama bin Laden.

So this ALEC-Heartland partnership is truly a match made in…well…

Adding to ALEC’s list of anti-environmental goals – including promoting legislation to kill climate policies and providing the framework for legislation that would prevent the Environmental Protection Agency from regulating toxic coal ash – it now has its sights set on the 29 states that have renewable portfolio standards (RPS) and mandates in place.

And in typical Orwellian fashion this fight is dubbed the “Electricity Freedom Act,” as they deem state standards requiring utilities to get a portion of their electricity from renewable power “essentially a tax on consumers of electricity.” James Taylor, the Heartland Institute’s senior fellow for environmental policy, said he was able to persuade most of ALEC’s state legislators and corporate members to push for a repeal of laws requiring more solar and wind power use on the basis of economics, claiming that, “renewable power mandates are very costly to consumers throughout the 50 states, and that alternative energy, renewable energy, is more expensive than conventional energy.”

But whose freedom are they really protecting and whose freedom are they hindering?

Read More »

Also posted in Washington, DC / Tagged , | Read 2 Responses

Smart Technologies Allow For Improved Resiliency During Catastrophic Texas Weather

As we continue to reflect on Superstorm Sandy and its devastating aftermath, it is encouraging to point out how smart technologies can aid in lessening the impacts. While a smart grid will not prevent massive natural disasters from wreaking havoc on communities causing power outages and destruction, it can help lessen the consequences and quicken recovery.

My colleague Miriam Horn wrote a piece earlier this week and said, “We’re already seeing proof these [smart grid] investments can reduce recovery time, keep crews and customers safer, and save lots of money. Thanks in part to federal stimulus grants, a number of utilities are embedding sensors, communications and controls across their networks. On the power lines that it has helped prevent cascading disasters like the one that knocked out power to 55 million people in 2003, when a single Ohio tree fell on a power line. Automated systems can detect a fault, cordon it off and reroute power flow around it.”

Furthermore she states that “digital smart meters, capable of two-way communications, have also proved their worth: providing utilities real-time, granular visibility into their networks, without resorting to (often failing) phones or trucks dispatched on wild goose chases.  Programmed to send a “last gasp” signal when they lose power, those meters have enabled rapid diagnostics – pinpointing exactly which homes or blocks were out, where the break had occurred – and expedited repairs.”

In the DC area, “when the storm struck Monday, Pepco, the utility serving the nation’s capital and its Maryland suburbs, began getting wireless signals from smart meters on its network registering where individual customers had lost power, said Marcus Beal, senior project manager for Pepco’s smart meter program. One of the first movers to install smart meters, Pepco has 725,000 in place and had activated 425,000 of them before the storm struck. Instead of relying solely on customers to call in outage information on specific neighborhoods, Pepco dispatchers can track damage based on smart meter signals that are automatically linked into the utility’s outage map, guiding priorities for deploying repair crews, Beal said. As repairs proceed, the utility is also able to “ping” meters remotely to verify where and when power has been restored. ‘They certainly improve recovery time,’ Beal said, ‘without a doubt. They help to improve the efficiency of the restoration.’”

Here in Texas, we are prone to two main types of extreme weather conditions: hurricanes on the coast and tornados on the plains. Over the past few years we have witnessed the increased intensity of both in Texas and across the US. In 2008, When Hurricane Ike struck Houston as a Category 4, nearly 99 percent of residents lost power, which is about 2 million people.  After 13 days one-quarter of the residents of the fourth-largest U.S. city still did not have electricity.

In 2010, CenterPoint Energy, the utility in the area, began rolling out smart grid updates and said that future hurricane-related electric power outages should be shorter because of smart meters and other grid improvements. In comments filed by the City of Houston to the Public Utility Commission (PUC), a Task Force Report assembled after Ike identified the installation of intelligent grid technology as the ‘best return-on-investment to improve grid resilience and enable storm recovery system-wide’.  Therefore, the Task Force recommended the acceleration of CenterPoint’s intelligent grid deployment in the Houston area. A more intelligent electric grid, combined with smart meter technology, improves reliability by enabling automated self-healing of the grid, which results in fewer outages and faster restoration times for customers. This is crucial for public safety along the Texas Gulf Coast, and in the Houston area, specifically.

For other non-coastal areas in “Tornado Alley” Texas, cyclones can be truly terrifying and unpredictable, like the tornadoes that swept through the Dallas area in April of this year.  While images of tractor trailers and school buses being lifted and thrown like toys are scary, Texans can at least be encouraged by the example of Alabama Power, “which was slammed in April 2011 by 30 tornadoes across 70 miles with winds up to 190 mph. The twisters left 400,000 without power and thousands of poles, wires and substations damaged or destroyed. But by using its 1.4m smart meters to locate the outages and prioritize repairs, the utility restored all of its customers within a week. It also drives 4 million fewer miles each year.”

Across the country, smart meters and grid technologies are being installed, providing more reliability and efficiency in the event of disasters and during normal operations. The Federal Energy Regulatory Commission estimates the percentage of meters in the United States using the new digital technologies increased from 6.5 percent in 2009 to between 13 and 18 percent last year. The IHS consulting firm projects that, by the end of this year, one-third of all meters in North America will be advanced smart versions with two-way communications capability.

Luckily, Texas has 1 million smart meters already installed and is well on its way to 7 million by 2013.

With novel ways of planning, new technologies and innovative infrastructure – from the potential of microgrids enabling community self-sustainability by disconnecting from damaged main grids, and distributed renewable generation letting consumers power back up, to electric vehicles allowing people to avoid the long gas lines and shortages – the future can allow us to be more resilient in the face of catastrophe.

Also posted in Grid Modernization, Texas / Comments are closed