Market Forces

Creating Incentives for Agricultural GHG Abatement

One of the goals of EDF’s Ecosystems work is to provide farmers with revenue opportunities in reducing their greenhouse gas (GHG) footprint. Under AB32, California’s landmark legislation aimed at reducing GHG emissions, regulated entities may purchase carbon offsets to meet up to 8% of their obligations. Over the past six years, EDF has worked closely with growers to capitalize on the anticipated demand for these offsets, by developing protocols that will allow landowners to generate and sell agricultural offsets. On March 28, we reach a milestone in these efforts: the California Air Resources Board will host a workshop to begin a rulemaking process to consider the adoption of an offset protocol EDF has developed with the American Carbon Registry, crediting rice producers for GHG abatement practices.

We’ve put a great deal of work into understanding and piloting a myriad of rice farming techniques, while studying their implications for GHG emissions. A major conclusion from our analysis is that there exists a subset of viable alternative practices for rice producers in California with potential agronomic, economic and environmental benefits. The ones we’ve decided to focus on for our offset protocol are: baling, dry seeding, and early drainage of fields before harvest.

Agricultural activities account for an estimated 12% of global GHG emissions – the majority of these arise from sources of nitrous oxide and methane gases, composing ~60% and ~50% of the global total, respectively (as of IPCC AR4). Rice cultivation accounts for 5-20% of worldwide methane emissions; much of it is emitted as a byproduct of organic decomposition under flooded paddies. California’s goal to reduce its emissions to 1990 levels by 2020 through its cap-and-trade program (AB32) provides an opportunity for rice farmers to help the state meet its reduction goal.

There are multiple approaches for rice farmers to reduce GHG emissions. Some of these practices can be carried out before the harvest and others post-harvest. We’ve carried out some in-depth analysis on the various options, to better understand the incentives and revenue possibilities we will be encouraging through our policy work – we have found that there are a handful of ways that farmers can reduce GHG emissions while maintaining yields, earning some revenue for their efforts, and potentially save on costs in some circumstances.

Our analysis builds on a prior study by our partners Applied Geosolutions, UC Davis and the California Rice Commission that estimates GHG emissions and yields for the majority of rice producing acreage in the state. They use the DeNitrification-DeComposition (DNDC) model, simulating 6,316 rice fields for 16 farming practices. In our analysis, we first estimate the potential greenhouse gas abatement of a suite of specific practices: dry seeding the rice fields, baling harvest residue, and hydroperiod adjustments (draining of fields in midseason, before harvest and/or reducing winter flooding).

We then tabulate the cost of each management practice through a combination of literature, farmer and farm advisor consultation and combine these with abatement estimates to generate marginal abatement cost curves for each practice. Our preliminary results indicate a wide variability in abatement costs, depending on farming conditions. Of course, this is before factoring in the role of a carbon credit.

Unfortunately, not all of the practices we’ve studied are tenable in the Californian setting. One practice (midseason drainage of the fields) is accompanied with a significant decrease in yield and therefore does not lend itself well to the Sacramento Valley climate. In the case of stopping winter flooding, there could be negative habitat impacts for waterfowl that use this ecosystem as a feeding ground. Striving to understand such risks has been crucial in determining the extent to which producers will consider the new incentives created through the market.

Because the practices listed above have not been widely adopted, they are key opportunities for the generation of offsets.  To better understand adoption rates, EDF is conducting further research in determining the quantitative and qualitative barriers that are limiting farmers from adopting such farming methods.

California will be one of the first rice producing regions in the U.S. to present abatement opportunities in conjunction with a carbon market. Combining economic principles such as abatement cost curves with biogeochemical models (e.g. DNDC) is useful in studying such opportunities. Further, the ability to simulate practices at the field level is central to understanding the economic potential of offset protocols granting agricultural producers access to carbon markets. In turn, this can create new incentives to abate GHG emissions from agriculture while potentially providing new sources of revenue to landowners – potentially a win-win situation.

We are excited that Thursday’s California Air Resources Board workshop will kick off the rulemaking process and that farmers can soon benefit from these interesting prospects.

Posted in California, Cap and Trade, Climate science / Comments are closed

Why does no one in Thailand recycle, Bangkok is a polluted mess, yet everyone uses CFLs?

Few Thais recycle, no one bikes, plastic bags are everywhere and Bangkok is afflicted by gridlock and pollution. So you might say that, in general, Thais behave more like citizens of a rapidly emerging economy than the typical Brooklyn environmentalist.

Why, then, does virtually every home use efficient compact fluorescent lights (CFLs). Americans and Europeans needed a ban on incandescent bulbs to make the switch. Not so the Thais, where you can still buy cheaper, more inefficient incandescent bulbs at the corner store.

Was it the influence of a higher authority? Thais famously revere their 85-year-old King, the world’s longest-reigning head of state, who happens to be an environmentalist.

The answer is, mostly, no.

Continue reading at EDF Voices.

Posted in International / Comments are closed

Capping Pollution from Coast to Coast

As the second auction in California’s landmark cap and trade program approaches, a coalition of states on the opposite side of the country – that have been cost-effectively reducing their carbon pollution while saving their consumers money – announced plans to strengthen their emission reduction goals.  Last week, the Regional Greenhouse Gas Initiative (RGGI) – the nation’s first cap and trade program which sets a cap on carbon dioxide pollution from the electric power sector in 9 Northeastern states (Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire, New York, Rhode Island, and Vermont) – released an updated Model Rule containing a number of improvements to the program, primarily a significantly lower (by 45%) overall cap, realigning it with current emissions levels.

Since the program took effect in 2009, emission reductions in the RGGI region have occurred faster and at lower cost than originally expected.  This has primarily been the result of increased electric generation from natural gas and renewables which have displaced more carbon-intensive sources like coal and oil, as well as investments in energy efficiency that lower overall electricity demand.  These reductions have been accompanied by lower electricity prices in the region (down 10% since the program began) and significant economic benefits:  a study from the Analysis Group estimated that electric consumers would save $1.1 billion on their bills over 10 years from the energy efficiency improvements funded by allowance revenue, and further, that these savings would generate over $1.6 billion in economic benefits for the region.

The new lower cap allows RGGI to secure the reductions already achieved, and push forward towards more ambitious pollution reduction goals.  The changes to the program are the result of a transparent and comprehensive program review process set in motion through RGGI’s original Memorandum of Understanding – a mechanism that is successfully fulfilling its original intention by allowing the states to evaluate results and make critical improvements.

While the changes will go a long way to fortify the program, there is room in the future for the RGGI states to look to California’s strong program design for additional enhancements.  For example, RGGI’s updated Model Rule creates a Cost Containment Reserve (CCR) – a fixed quantity of allowances which are made available for sale if allowance prices exceed predefined “trigger prices”.  A CCR is a smart design feature which provides additional flexibility and cost containment – however, RGGI’s CCR allowances are designed to be additional to the cap, rather than carved out from underneath it as in CA’s program (ensuring the overall emission reduction goals will be met).  California’s program has displayed enormous success already, with a strong showing in their first auction.

In the meantime, the RGGI states should be commended for their success thus far, and for their renewed leadership as they take important steps to strengthen the program.  These states have achieved significant reductions in emissions of heat-trapping pollutants at lower costs than originally projected, all while saving their citizens money and stimulating their economies, transitioning their power sector towards cleaner, safer generation sources, and laying a strong foundation for compliance with the Carbon Pollution Standards for power plants being developed under the Clean Air Act.  Such impressive achievements provide a powerful, concrete example of how to tackle harmful carbon pollution and capture the important co-benefits of doing so.

The bottom line is that cap and trade is alive and well on both coasts as the states continue to lead the charge on tackling climate change in the U.S. while delivering clear economic benefits.

Posted in California, Cap and Trade, Cap and Trade Watch, Clean Air Act, Markets 101, Politics / Comments are closed

Nature: The rebound effect is overplayed

Trying to put the rebound effect for energy efficiency in its rightful place is like playing a game of wack-a-mole. Predictably every couple of years, someone new discovers the counter-intuitive appeal of showing how more efficient energy policies may lead to more energy use. Wham! Told you there’s something wrong with those clean-car standards. Well, not so fast.

Yes, the rebound effect is real. But it’s also small. And what’s there is actually positive! Why shouldn’t people who can now afford to due to more efficient energy technologies be able to improve their lives?

Together with three co-authors (Ken Gillingham at Yale, Dave Rapson at University of California, Davis, and Matt Kotchen, currently on leave from Yale to serve as Deputy Assistant Secretary for Environment and Energy at the U.S. Treasury), I surveyed a bajillion+1 energy efficiency rebound studies. Nature then made us cut down those references to 6. We settled at 9.

We couldn’t find a single study that has the rebound be above 100% or anything close to it, what’s necessary to nix energy efficiency savings. The maximum number you can get is 60%, and that’s already quite a stretch. Think 30% as the upper bound for actual behavioral responses. Yes, we are more efficient today than we were a hundred years ago, and we also use more energy today. But that’s far from talking about the rebound effect. It’s simply economic growth.

Establishing a causal link between efficiency and energy use isn’t quite as simple. In the end, the rebound effect comes in four forms. Buy a more fuel-efficient car, and driving that next mile just became cheaper. The result: a bit more driving, to the tune of 5 to a maximum of 30%, although most likely much closer to 5-10% of the initial fuel savings. Then there’s the indirect effect: Drivers may now use some of the savings to buy other products that consume energy.

You can already see that we can’t just add these two effects. If you spend some of the gas money on driving more, you have less to spend on that plane ticket, and vice versa.

Then there are two macroeconomic effects: one via the price and one via technological advances. They are the trickiest to pin down and could, in theory, be the largest. But theory lends a helping hand in getting an upper bound: the basic demand-and-supply relationship tells us that the macroeconomic price effect can’t be more than 100%.

And once again, all these effects aren’t anywhere near that threshold. 60% is as high as it gets for the combined effect, and only in rare circumstances. For the most part, it’s much closer to 5 to perhaps 30%.

So where does that leave us?

When designing energy efficiency policies like clean-car standards, consider the rebound effect, much like the government already does. The Department of Energy’s model uses a highly appropriate 10% rebound figure for the car standards. And that’s about it. Not much else to see here.

If you did want to take it a step further — full disclosure: a step I couldn’t convince my three co-authors to take in the Nature piece itself — everything else equal, the existence of the rebound effect may prompt us to use even stricter energy efficiency standards. If you have an overall target in mind, and the rebound effect shaves off a bit, you ought to consider using a slightly stricter target to get back to where you wanted to be.

For more, check out the full Nature piece. Well worth the $32 to put the rebound effect in its rightful place once and for all.

Posted in Clean Air Act, Politics / Comments are closed

Geoengineering: ignore economics and governance at your peril

Cross-posted from Climate 411.

How serious is global warming? Here’s one indication: the first rogue entrepreneurs have begun testing the waters on geoengineering, as Naomi Klein laments in her must-read New York Times op-ed.

Sadly, Klein misses two important points.

First, it’s not a question of if but when humanity will be compelled to use geoengineering, unless we change course on our climate policies (or lack thereof). Second, all of this calls for more research and a clear, comprehensive governance effort on the part of governments and serious scientists – not a ban of geoengineering that we cannot and will not adhere to. (See point number one.)

Saying that we ought not to tinker with the planet on a grand scale – by attempting to create an artificial sun shield, for example – won’t make it so. Humanity got into this mess thanks to what economists call the “free rider” effect. All seven billion of us are free riders on the planet, contributing to global warming in various ways but paying nothing toward the damage it causes. No wonder it’s so hard to pass a sensible cap or tax on carbon pollution. Who wants to pay for something that they’re used to doing for free – never mind that it comes at great cost to those around them?

It gets worse: Turns out the same economic forces pushing us to do too little on the pollution front are pushing us toward a quick, cheap fix – a plan B.

Enter the Strangelovian world of geoengineering – tinkering with the whole planet. It comes in two distinct flavors:

  • Sucking carbon out of the atmosphere;
  • Creating an artificial sun shield for the planet.

The first involves reversing some of the same processes that cause global warming in the first place. Instead of taking fossil fuels out of the ground and burning them, we would now take carbon dioxide out of the atmosphere and bury it under ground. That sounds expensive, and it is. Estimates range from $40 to $200 and more per ton of carbon dioxide – trillions of dollars to solve the problem.

That brings us to the second, scary flavor, which David Keith, a leading thinker on geoengineering, calls “chemotherapy” for the planet. The direct price tag to create an artificial sun shield: pennies per ton of carbon dioxide. It’s the kind of intervention an island nation, or a billionaire greenfinger, could pay for.

You can see where economics enters the picture. The first form of geoengineering won’t happen unless we place a serious price on carbon pollution. The second may be too cheap to resist.

In a recent Foreign Policy essay, Harvard’s Martin Weitzman and I called the forces pushing us toward quick and dirty climate modification “free driving.” Crude attempts to, say, inject sulfur particles into the atmosphere to counter carbon dioxide already there would be so cheap it might as well be free. We are talking tens or hundreds of millions of dollars a year. That’s orders of magnitude cheaper than tackling the root cause of the problem.

Given the climate path we are on, it’s only a matter of time before this “free driver” effect takes hold. Imagine a country badly hit by adverse climate changes: India’s crops are wilting; China’s rivers are drying up. Millions of people are suffering. What government, under such circumstances, would not feel justified in taking drastic action, even in defiance of world opinion?

Once we reach that tipping point, there won’t be time to reverse warming by pursuing collective strategies to move the world onto a more sustainable growth path. Instead, speed will be of the essence, which will mean trying untested and largely hypothetical techniques like mimicking volcanoes and putting sulfur particles in the stratosphere to create an artificial shield from the sun.

That artificial sunscreen may well cool the earth. But what else might it do? Floods somewhere, droughts in other places, and a host of unknown and largely unknowable effects in between. That’s the scary prospect. And we’d be experimenting on a planetary scale, in warp speed.

That all leads to the second key point: we ought to do research in geoengineering, and do so guided by sensible governance principles adhered to be all. We cannot let research get ahead of public opinion and government oversight. The geoengineering governance initiative convened by the British Royal Society, the Academy of Sciences for the Developing World, and the Environmental Defense Fund is a necessary first step in the right direction.

Is there any hope in this doomsday scenario? Absolutely. Country after country is following the trend set by the European Union to institute a cap or price on carbon pollution. Australia, New Zealand, South Korea, and also California are already – or will soon be – limiting their carbon pollution. India has a dollar-a-ton coal tax. China is experimenting with seven regional cap-and-trade systems.

None of these is sufficient by itself. But let’s hope this trend expands –fast – to include the really big emitters like the whole of China and the U.S., Brazil, Indonesia, and others. Remember, the question is not if the “free driver” effect will kick in as the world warms. It’s when.

Posted in Climate science, International, Politics / Comments are closed

The Nuts and Bolts of California’s First Greenhouse Gas Auction

This article was originally posted at California Dream 2.0.

 

Following today’s California Air Resources Board’s (CARB) board meeting, the next major milestone in California’s efforts to reduce greenhouse gas (GHG) emissions is on November 14th, when California will hold the first auction of carbon allowances for the Global Warming Solutions Act (AB 32) cap-and-trade program. EDF has closely followed the steps CARB has taken to prepare, including participating in their successful “practice auction” this past August.  In order to shed some light on the nuts and bolts of how these auctions will work and the process going forward, we’ve put together an Auction FAQ factsheet to help answer some basic questions.

Why is CARB Auctioning CO2 Allowances?

In terms of allowance distribution, the AB32 program includes a combination of free allocation and auctioned allowances.  While it is the cap that ensures that the targeted quantity of emission reductions are achieved – regardless of the choice of type of allowance distribution – there are important differences between auctioning and free allocation relating to issues such as transaction costs, market power, price certainty, and distribution of allowance value.

Perhaps most importantly, auctioning allowances creates proceeds that can be invested in a variety of ways to further the goals of AB32 – for example, financing emission reduction projects in either capped or uncapped sectors, keeping energy prices down, or preparing for the impacts of global warming.  In addition, twenty-five percent of proceeds are actually required to be used in ways that benefit disadvantaged communities.

Another advantage of auctioning CO2 allowances is that it guarantees that all regulated entities have access to allowances on an equal footing. By holding an auction, California ensures that both large and small companies have access to allowances under the same terms, thus reducing the risk that the market becomes dominated by a few big players.

How the Auction Works

The California auction will be using a single-round, sealed-bid, uniform-price format. Under this format, companies submit confidential bids for a specific amount of allowances at specific prices (also called a bid schedule). The highest bidder is allocated their requested quantity of allowances first, then the second highest bidder, etc., until there are no more allowances.  Winning bidders receive the quantity of allowances they bid for at the uniform settlement price, which is determined as the value of the lowest winning bid – or more simply, the price at which the market clears. Regardless of their original bids, all winning bidders pay the same price. This auction format creates a clear market price, which is crucial for investors.

Using Auction Revenue to Further Emissions Reductions

There are abundant opportunities to invest the auction proceeds into sectors that deliver greenhouse gas reductions in California – from clean energy to clean transportation, energy storage and clean tech finance and investment. Not only do these investments further California’s greenhouse gas reduction goals, they can also provide considerable economic benefits, as well as substantial health co-benefits, while helping set California’s path towards sustainable economic growth. To learn more about investing AB32 auction proceeds to grow California’s clean economy, read the EDF Invest to Grow report.

Auctions will play an important role in California’s cap-and-trade program; they encourage a more stable market and create proceeds that can be used to make California’s efforts to cut climate change pollution even more effective. For more details about how the auctions are designed, how the bidding process works and what to expect on November 14th, see EDF’s Auction FAQ factsheet and the California Air Resources Board’s website (here).

Posted in Uncategorized / Comments are closed