Market Forces

Not the U.S. or China, but the U.S., China and the Planet

One of the pleasures of my job is having a slew of superbly qualified prospective interns knock on our doors. Yesterday, I interviewed someone who graduated at the top of his class at Renmin University in Beijing.

There have been plenty of column inches written on “China versus the US,” including when it comes to green jobs and clean tech. So,

Who’s going to come out ahead, China or the United States?

It took him nary a second to nail this one:

China, relatively. Both China and the U.S. in an absolute sense.

That’s the textbook answer.

The atmosphere wins

China has a lot of catching up to do. Comparatively, it will clearly gain on the U.S. But trade also has advantages for both parties involved. That’s why we trade in the first place.

The planet emerges as a winner as well. It doesn’t care where a ton of carbon gets emitted or where it gets reduced—just that reductions happen.

If China produces cheaper solar panels, we get fewer emissions overall. The planet wins. China wins. What about the U.S.?

What about jobs?

If you are among the 800 workers in Devens, MA, who last week found out that Evergreen Solar was moving its plant to China, you will feel very differently about free trade right about now. The textbook economic answer would say that the move can still make everyone better off: compensate the losers through portions of the gains from the winners, and everybody wins once again.

This situation, of course, is the moment when you throw out your textbook and think about the full consequences.

As a result of the move, solar panels will likely become even cheaper for everyone, enabling many more to buy them. Still, the Devens 800 will not be among the people lining up to buy cheaper solar panels.

What can they do? What should the U.S. do as a matter of policy?

First, we need to realize that the rules of trade still apply. China has lots of cheap labor. It does and will continue to manufacture many products sold in the U.S. Solar panels are no different.

But that’s still not a satisfying answer, nor is it the whole story—not for manufacturing itself, and not for the clean tech industry overall.

How to keep clean tech jobs in the U.S.

To get to the bottom of this, we need to look at the full supply chain for solar panels. This, of course, oversimplifies things, but we can split the entire process into three distinct buckets: inventing, producing, and installing.

Right now, the U.S. is inventing, China is producing, and it is the one installing the resulting solar panels domestically at massive scale.

The U.S. ought to do everything to make sure it keeps inventing clean tech products. That means a concerted push to fund basic research and development. But R&D subsidies alone won’t do.

Many mentions of “R&D” add a second “D” for deployment. Government support can get things going, but large-scale deployment of clean technologies won’t happen through subsidies alone (at least not without bankrupting the government).

So how do you get deployment up to scale?

Deployment clearly needs to be driven by demand. That’s where a cap on carbon pollution, with its resulting price on carbon, comes in. A cap helps create a more level playing field for solar and other renewable energy sources relative to fossil energy and, therefore, creates the necessary demand. (There are alternatives, like simply requiring a certain percentage of power to come from solar, but none is quite as cheap and flexible as a cap.)

Made in USA?

Moreover, cheap labor and cheaper production facilities may be a decisive factor, but they are not the only reason companies consider when choosing where to locate. There are many more, but let’s focus on two: intellectual property (IP) protection and being close to where the demand is.

The U.S. has a leg up on China in terms of IP protection. That’s, in part, why the U.S. (still) leads on R&D. It’s also a clear draw for some companies to locate their production facilities in the U.S.

Another oft-cited reason is to be close to consumers. That’s once again where the importance of the second “D”—deployment—comes in. The more demand there is for solar panels in the U.S., the more companies will locate their production plants in the U.S. as well. The case of First Solar supplying panels for Wal-Mart is a prime example. (Note that this is distinct from cheaper production leading to more demand in the first place.)

In the end, though, we must also be clear that jobs will be different in the new, cleaner economy. We will need fewer gas station attendants. Many other jobs will thrive. Underlying trade forces will mean that China may well be producing many of the solar panels sold globally. Assembling, installing, and maintaining solar panels in the U.S. will require plenty of skilled labor. And none of these jobs can be exported.

California leading

With the right policies in place, the U.S. will keep inventing. It will also create thousands of jobs dedicated to deployment. China will play a major role in producing, but even there, smart environmental policy can only help.

California is taking the lead with its Million Solar Roofs initiative, creating many a job assembling, installing, and maintaining solar panels. That initiative, though, still has to be paid for by tax dollars, and it won’t go on forever.

That’s where the cap on carbon kicks in. California is bound to stay ahead of the rest of the U.S. with its ambitious cap-and-trade system that starts on January 1, 2012 and the resulting market signal that says that clean tech pays in the U.S. as well.

Consider the just-released Next 10 report, Many Shades of Green, that found that in the most recent observable 12-month period (January 2008 – January 2009) jobs in the green sector grew more than three times faster than total employment in California. (Of course, all of this always comes with the warning that green sector jobs are still a small fraction of total jobs—much like IT jobs were a minuscule part of overall employment in the early 1980s.)

One of our internship spot may well end up going to a Chinese student, but that, too, can only be good for the planet—making a small contribution to help train the next generation of Chinese environmental leaders. And rest assured, there are plenty more open job positions (including one for a post-doc working with our economic team, open to anyone with a Princeton affiliation).

Also posted in California, International, Markets 101, Politics / Leave a comment

The long and the short of energy efficiency

David Owen asks a provocative question in the current New YorkerIf our machines use less energy, will we just use them more? He more or less says yes. The real answer comes in two parts.

For now—over days, weeks, months, and even years—energy efficiency will decrease energy use and emissions. Screw a compact fluorescent light (CFL) bulb into a socket that used to hold an incandescent and your energy use will go down. Chances are you won’t leave the lights on four times as long just because light now costs a quarter.

Over time—years, decades, centuries, and millennia—more energy efficient lights and appliances will indeed mean that more people use more of them. CFLs make light more affordable. That doesn’t matter to the typical U.S. household, where few light sockets remain unused because of energy costs. But globally—and over time—it does make a difference.

The Jevons Paradox

William Stanley JevonsOwen goes back to 1865 and William Stanley Jevons who at 28 came up with what has later been called the “Jevons Paradox”:

It is wholly a confusion of ideas to suppose that the economical use of fuel is equivalent to a diminished consumption. The very contrary is the truth.

Jevons is right, of course. We have seen dramatic increases in energy efficiency over centuries while energy use has gone up by orders of magnitude.

Does that mean we shouldn’t increase energy efficiency? Of course not. We just need to be clear about what we are getting in exchange.

Energy over the millennia

Sperm WhaleBy the mid-1800s, the latest and greatest in lighting technology was spermaceti, a fat from the head of sperm whales. It cost around $1,500 a barrel in today’s dollars and its price was only going to go up as whales became ever scarcer. Since then, we have seen gas lights come and go and by now electric lights cost less than a thousandth as much as the equivalent in lighting power back then.

That’s not a recent phenomenon. Bill Nordhaus went back to 500,000 BC. Lighting cost a million times [PDF] as much then as it does today. Needless to say, we are using much more of it now.

Another word for this phenomenon is “technological progress.” That’s really what’s behind the whale oil story, and we want more of it. There is still plenty of energy poverty [PDF] in the world. We clearly want affordable, clean energy for as many people as possible.

Of course, misguided “progress” has also led us to a planet on the brink of breakage. We need to limit greenhouse gas emissions—and do so sooner rather than later.

Will energy efficiency save the climate?

Should we look to energy efficiency as a way to do some of that? Absolutely. Energy efficiency is cheap, quick, clean, and often underutilized.

McKinsey has looked for zero-cost energy efficiency opportunities in the United States and has found possible savings of above 20 percent of total demand in 2020.  Those savings, could go a long way toward meeting commonly discussed climate policy goals.

But won’t those energy savings just mean that we are using more energy eventually? History has shown it to be true after all.

In the short run—over days, weeks, months, and even years—the Jevons Paradox manifests itself in a well-documented “rebound effect” of around 10 percent. On average, you would indeed leave your CFL on for a bit longer than you would an incandescent. We lose a tenth of energy savings to increased use. (Owen cites the 10 percent figure but then goes on to overstate some of the implications dramatically.)

That leaves 90 percent in true savings and points to the clear win-win potential of energy efficiency measures.

Not by energy efficiency alone

In the long run—over years, decades, centuries, and millennia—cleaner and cheaper energy also means more people will be using more of it.

Does that mean energy efficiency is bad? Of course not. Energy inefficiency is another term for waste. And we clearly want less of that. But the problems our planet faces are too large to address through waste reduction (“reduce, reuse, recycle”) alone.

To get emissions down in the long run, there’s no escaping the (gasp) inconvenient truth that we must limit pollution directly—ideally though a declining cap on total emissions.

A cap on emissions—and the ensuing price on carbon pollution and race to invent cleaner energy sources—is the only mechanism we know that can break the link between emissions and energy use.  It limits the former and makes clean energy cheaper relative to fossil fuels.

Also posted in Markets 101, Technology / Leave a comment

First steps for the California carbon trading market

Whoever said cap and trade is dead hasn’t been paying attention to the news in California.

Recently, the first trade of a greenhouse gas emissions permit in the Golden State took place, signaling the beginning of what experts project to be a robust carbon market—and the largest in the U.S. given the absence of a nation-wide policy (note that the Regional Greenhouse Gas Initiative (RGGI), the first mandatory market-based effort in the U.S. with 10 participating Northeastern states, applies to utilities, while California’s program will also apply to industry and in later years, transportation).  The trade takes place hot on the heels of the defeat of Proposition 23 in the November elections.

Although the compliance market won’t launch until 2012, Barclays Bank and NRG Energy completed the first allowance trade:  a forward contract which guarantees the delivery of allowances valid for use in the California market at the start of the program at a locked-in price (around $11-$11.50 according to Point Carbon).  By helping provide certainty about the future, these types of trades allow firms to make smart business planning decisions, such as which energy technologies to invest in.  Experts at Barclays as well as at San Francisco-based CantorCO2 expect that other early trades are soon to follow, as firms look for ways to reduce risk and start transitioning to a clean energy economy.

Ensuring the integrity of the carbon market…

State regulators have been able to provide sufficient certainty about how the market will be structured and the timeline for regulatory action to allow for this early launch of the California market.  However, it will be important to nail down sooner rather than later the nitty-gritty specifics of how the market will be regulated in order to ensure that trading occurs in an efficient and transparent way (note that the California Air Resources Board (CARB) is currently accepting comments on a detailed rule proposal).

The financial crisis we just lived through should provide ample incentive for us to make sure to get the rules right and for ensuring tough enforcement and strong oversight — for example, by requiring all carbon trading to be done on registered exchanges, rather than over the counter.  On that point, it’s worth noting that the recently passed Dodd-Frank Financial Reform legislation requires the Commodities Futures Trading Commission (CFTC) to lead an interagency study on how best to regulate the carbon market.  (Carl Royal’s 2009 testimony from the House Energy & Commerce Committee hearing on the American Clean Energy and Security Act and our own fact sheet provide some more arguments).

The path forward for CA

California’s cap-and-trade program will cover the power and industrial sectors starting in 2012 and the transportation sector (including cars and fuels) beginning in 2015.  Time and time again, California and other regional initiatives, like RGGI, continue to lead the nation on sensible energy and climate policy (and stay tuned for developments in the Western Climate Initiative (WCI) as well as New Mexico).  Time for Washington to catch up.

Also posted in California, Cap and Trade Watch, Markets 101 / Leave a comment

How environmental economics saved Christmas

Art Carden has a great piece on the Grinch saving Christmas,

using Pigouvian taxes and the bargaining business.

But it reminds us again that even Coase missed the mark,

when it comes to things outside of Whoville’s small arc.

So to Art’s welcome take on a Yuletide tradition,

We humbly append a climate-change addition:

Since Whoville Whos’ chanting affects only the Grinch,

Bargaining is the solution that works in a pinch.

Climate’s a problem that affects the whole planet,

Coasian bargaining is much too small to span it.

A price on carbon is the better path,

all we need now is the political math.

Failing that, to be sure, we have the EPA,

not a first-best choice, still it may win the day.

To save the world’s Whovilles, we need a solution

that in the end puts a firm limit on carbon pollution.

Cap and trade is the most certain way

to give every Who joy on this and future Christmas Days.

Also posted in Politics / Leave a comment

No jobs in economic modeling

Co-authored with Nat Keohane.

Last week Nat Keohane and I tried to shed some light on the inner workings of economic models when it comes to jobs. Among other more specific statements around climate policy, we also said that,

many macroeconomic models don’t actually attempt to model jobs. In fact, they generally assume full employment no matter what happens, which doesn’t leave any room for estimating increases or decreases in jobs as a result of specific policies.

We should have been clearer here. If you think of employment as “total units of labor employed, given equilibrium wages and household labor-supply decisions,” then yes macroeconomic models do model employment—just as they model the equilibrium values of other inputs and outputs in the economy.

That’s just not how you or I think about jobs, and that has some major implications.

Economic modeling versus the real world

Computable general equilibrium models of the economy literally assume full employment in the sense that everyone who wants to work works.

When we think about unemployment in the real world, it is due to the fact that people actually lose their jobs. More technically, there are market frictions that keep wages high in recessions. As a result, demand for workers goes down.

Not so in the world of general equilibrium economic models. There, wages rise and fall with the fate of the economy. In a recession, wages fall and people simply choose to work less. The technical term is the household “labor-leisure tradeoff.” People work less because they supply less labor to the economy.

Most people, of course, would argue that when wages fall you have to work more to make up the gap.  That intuition can’t be true in an economic equilibrium, which is what the models are trying to capture; hence the discrepancy between models and the real world.

Not all models are created equal

So how then do economic modelers estimate employment impacts?

First, not all models are of the “general equilibrium” type that have the full-employment assumption built into them.  For example, the Department of Energy’s Energy Information Administration relies on a macroeconomic model called National Energy Modeling System (NEMS), which has a different structure.  Partly as a result, the NEMS model does produce employment estimates.

Second, you sometimes see even general equilibrium models being used to derive numbers on jobs.  In those cases, however, the jobs impacts are computed after the fact: the modelers take the estimated effects on output and then back out employment impacts using rather arbitrary rules of thumb that assume a high degree of friction in labor markets even over long periods of time, often decades.  This is problematic, to say the least, because it goes directly against the grain of the underlying models used to produce those results.

The Peterson Institute study mentioned in our last post, which uses the NEMS model, is in the first camp.  It is also among the first to take a more realistic look at the jobs impacts of climate policy given the current recession.  Not surprisingly, it comes up with a very different answer on the jobs question.

Also posted in Politics / Leave a comment

There they go again, again

Steve Cochran, head of EDF’s climate and air program, debunks economic scare tactics used against the highly successful acid rain program in the Clean Air Act Amendments of 1990. First in a series:

There they go again. Economic meltdown. Higher consumer costs. Massive job losses. These are among the predictions of doom surrounding EPA’s current and forthcoming round of clean air protections. If they sound familiar, they should. Time and again, from the enactment of the Clean Air Act in 1970 to today, prophets of doom have predicted that disastrous consequences would flow from cleaning the air we all breathe. And time and again, those dire predictions have been wrong. The Clean Air Act has protected American health and our environment for decades while our economy has grown. It is a legislative success story that continues today.

This series will examine what the naysayers have said about Clean Air Act protections and how those wild predictions compare to the statute’s actual record of protecting Americans from toxic air pollution and its devastating effects on human health and the environment. We start with the acid rain program in the Clean Air Act Amendments of 1990.

Read the full post on EDF’s Climate411 blog.

Also posted in Politics / Leave a comment