EDF Health

New Approach Methodologies Should Adhere to TSCA Standards

What’s New?

EPA recently asked its Board of Scientific Counselors (BOSC), comprised of experts in the fields of toxicology and environmental chemistry, to make recommendations on implementing new approach methods (NAMs) for testing the safety of new chemicals.

NAMs encompass a wide array of new evaluation strategies, including testing cell lines or invertebrates (rather than mammals); using computational approaches; and estimating potential harms of new chemicals by looking at existing toxicity data on similar substances.

Why It Matters

EPA announced in 2019 that it would be redirecting resources towards developing NAMs to replace those studies. The looming concern is the possibility that NAMs may miss effects that whole animal mammalian testing accounts for and generate false negatives — potentially allowing toxic chemicals to appear in consumer products or end up in our environment.

This could happen because relying only on NAMs or using data from one chemical to predict how a new one might behave opens the door to missing negative effects. NAMs could also cause evaluators to miss opportunities to use the Toxic Substances Control Act (TSCA), the nation’s primary chemical safety law, to limit toxic chemical exposures. Read More »

Also posted in Chemical regulation, Cumulative risk assessment, Emerging science, Emerging testing methods, Frontline communities, Health science, New approach methods (NAMs), Risk assessment, TSCA / Tagged , , | Authors: / Comments are closed

Fatally Flawed: EDF & partners call on EPA to revoke approval for new chemicals with shocking health risks

 

 

A sepia-toned image showing a factory with dark smoke billowing out of multiple smokestacks.

What Happened?

EDF and other environmental groups recently asked the Environmental Protection Agency (EPA) to withdraw the approval it issued for a group of new chemicals. This approval, also known as a consent order, allows Chevron to create fuels at its refinery in Pascagoula, Mississippi, by using oils produced through a process of superheating plastic waste to break it down (a process known as pyrolysis). The consent order also allows for the use of these fuels derived from waste plastic at more than 100 locations. ProPublica published an article on the issue on August 4, 2023.

Why It Matters

EPA is required by law to provide protections against unreasonable risks posed by new chemicals. But in the consent order EPA approved the production and use of these new chemicals despite significant health risks. One of the chemicals posed a 1 in 4 risk of developing cancer for people exposed to it. Another chemical carried risks of a 7 in 100 cancer risk from eating fish contaminated by it and a greater than 1.3 in 1 cancer risk from inhaling it.

When asked about the shockingly high cancer risks it estimated, EPA claimed its cancer risk assumptions were overly conservative but failed to provide any information about what it believes are the actual risks and pointed to undefined controls under other laws as controlling the risks.

Until now, the acceptable risk standard for cancer in the general population has been 1 in 1,000,000. The risk levels EPA identified are up to 1,000,000 times greater than that. Read More »

Also posted in Adverse health effects, Chemical exposure, Chemical regulation, Frontline communities, Health hazards, Health policy, Industry influence, Risk assessment, TSCA, Vulnerable populations / Tagged , , , , | Authors: / Comments are closed

Lead Cables: 66,000 miles overhead or underwater

Abandoned telecom cable leaching lead into Idaho fishing waters.

Abandoned telecom cable leaching lead into Idaho fishing waters Photo: Monique Rydel-Fortner

What’s New?

A blockbuster Wall Street Journal (WSJ) investigation showed that lead-sheathed telecom cables are releasing toxic lead into water or surface soil. We are aware of more than 2,000 of these cables across the nation—and more than 300 of those pose a threat to community drinking water sources.

Recognizing the potential risks to public health, EDF, Clean Water Action, and Below the Blue asked EPA on July 17 to investigate potential harms and replace abandoned lead cables strung between telephone poles, as well as any that are accessible to children.

In response, AT&T reported that it has more than 66,000 miles of lead cables, most of which are the overhead type, with the balance running underwater. This is a stunning amount – enough to circle the earth 2.5 times!

Legislators are already demanding that telecom firms act, and EPA and the Department of Justice say they are reviewing the issue. In addition, New York Governor Kathy Hochul directed three key state agencies to investigate the risks. In response, the agencies sent letters to 246 telecom providers requesting their inventory of lead cables. I also appeared on CNBC’s Squawk Box to explain the situation, EDF’s role in the investigation, and the cables’ potential risks. Read More »

Also posted in Contamination, Drinking water, Health hazards, Health policy, Regulation, Risk assessment / Tagged , , , , | Authors: / Comments are closed

Broken GRAS: FDA’s lack of post-market oversight continues to create health risks

Brown glass vial surrounded by pepper corns

What Happened?

In April, a company called Prime Research Reports issued a press release in which it claimed FDA had approved THP (tetrahydropiperine) as a Generally Recognized As Safe (GRAS) substance “for use in food products.” There is no record that FDA has either reviewed or approved THP for use in food.

The report describes Sabinsa as a manufacturer of THP and as “a major player” in that market.[1] The substance, commercially known as Cosmoperine, is derived from a highly purified extract from black pepper; the extract, which is more than 95% piperine, is also made by Sabinsa and is marketed as BioPerine. The company describes piperine as an alkaloid present in black and long pepper.

Read More »

Also posted in Adverse health effects, Broken GRAS, FDA, Food, Health hazards, Industry influence, Risk assessment / Tagged , , , , , , , | Authors: , / Read 1 Response

EPA Should Use U.S. Chemical Safety Law to Turn Off PFAS Tap

The word

PFAS is a group of synthetic chemicals used in industrial processes and consumer products, including water-repellent clothing, such as outdoor wear, and food packaging. Once these “forever chemicals” are produced and used, they often make their way into the environment and our bodies. Many pose serious threats due to their toxic effects (often at trace levels) and their ability to build up in people, animals and the environment. Studies show that they are in almost all of us.

To make matters worse, people are exposed to multiple PFAS, not individual PFAS in isolation. Yet under the nation’s primary chemical safety law, EPA evaluates the safety of PFAS chemicals one at a time and does not consider the combined risks from exposures to multiple PFAS. Combined exposures increase the risk of harmful effects, thus magnifying the risks and the need for action.

Current Situation: All Costs, No Benefits

PFAS move easily throughout the environment and are difficult to destroy. They have contaminated drinking water, food, farms, wildlife, and the environment more broadly. At the local, state and federal levels, the U.S. is spending millions of dollars to clean up PFAS contamination. Some states, such as Michigan and Maine, are trying to recoup the costs their residents have had to bear to clean-up PFAS contamination of their water and land. The federal government is also taking action to address the widespread PFAS contamination. The costs for cleaning up PFAS contamination are imposed on society by the domestic producers, importers and users of PFAS who profit from their production and use.

Yet, despite the well-documented risks and costs to society of these chemicals, companies still continue to produce, import, and use PFAS. It is time to ban all PFAS or—if there are truly essential uses for these chemicals—limit how they are produced, imported and used so that their impact on us and the environment is minimal.

Urgent Need: Revisit, Reassess, and Regulate All PFAS

While EPA has recently tightened up approvals for new PFAS entering the market, it has yet to take significant action on those that are already on the market, which includes the hundreds of PFAS the agency approved over the past few decades. It is clear these PFAS have not been produced responsibly as demonstrated by the environmental contamination associated with many of the PFAS manufacturing facilities. And yet, many of these PFAS are still on the market. They are being produced and released into the environment, are in products we use every day, and continue to contaminate us and our environment.

Many of EPA’s approvals were made 10 to 20 years ago, before we had a full picture of the pervasiveness and degree of PFAS contamination. The data on the extent of the environmental contamination of these persistent PFAS, their ability to move through the environment, and the significant difficulty in destroying them was not as robust as it is today. Furthermore, mounting evidence shows that even trace levels of PFAS can cause developmental issues in children, reduced fertility, hormonal disruptions, and certain types of cancer.

In addition, these approvals did not consider risks to vulnerable groups, such as pregnant women and children as currently required by the law. Many communities are exposed to multiple PFAS, particularly those who live, work and play near where PFAS are made and used.

Addressing the production, import and use of PFAS would limit further pollution of our water supplies, safeguard the health of our communities, and be consistent with other strong EPA actions to address PFAS, including its recent robust proposed drinking water standards.

Effective regulation of these harmful chemicals at their source would also accelerate efforts to seek out and adopt safer alternatives. Leaving chemicals with such well-documented harms on the market makes it more difficult for innovative, safer substitutes to enter it. Failing to address these risks in effect puts a thumb on the scale in support of older harmful technologies.

Our Take

EPA should re-evaluate each of the PFAS it has approved. During that re-evaluation, EPA should use the best available science and consider the full picture of PFAS exposure. Considering each PFAS in isolation rather than the multiple PFAS people, particularly those in vulnerable groups, are exposed to will underestimate their risk.

EPA should use the Toxic Substances Control Act to take action to ban these legacy PFAS, or restrict them if the uses are truly essential, rather than continuing to allow the production, import and use of these demonstrably harmful “forever chemicals.”

Go Deeper

Learn more about EDF’s concerns about PFAS and read our follow-up blog  on how EPA can use TSCA to turn off the PFAS tap.

EPA’s information on PFAS

Also posted in Chemical exposure, Chemical regulation, Contamination, Cumulative impact, Cumulative risk assessment, Emerging testing methods, Food, Food packaging, Health hazards, Health science, Public health, Risk assessment, TSCA, Vulnerable populations / Tagged , , , , , , , , , , , , | Authors: / Comments are closed

Health data needs to inform targeted environmental justice initiatives

Key Findings and Recommendations 

  • Air pollution results in a large burden of childhood asthma across the country, and this burden is disproportionately borne by people of color.
  • More than $100 million in grants from the Environmental Protection Agency is available for environmental justice initiatives, but targeting programs to alleviate the health impacts of air pollution to overburdened communities requires local-level health information that is often not readily available.  
  • We recommend health advocates and researchers work with local and state public health departments and impacted communities to access existing fine-scale data where available.

In the past, the lack of neighborhood-scale data on baseline disease rates, pollutant concentrations and children’s asthma has made it difficult to determine which U.S. communities bear the highest health burden from air pollution. Disparities in pollution exposures have been routinely underestimated. Generating more fine-scale data, together with advances in hyperlocal air monitoring, will make visible the disparities in exposure to air pollution across and within neighborhoods, allowing us to target mitigation and prevention efforts for maximum benefit. 

We now have an opportunity to make significant progress towards identifying, prioritizing and addressing the harms faced by the most burdened communities. EPA has made available over $100 million dollars for grants to advance environmental justice, including health impact assessments. Grant recipients can use the funds to obtain health information at the neighborhood level, data essential for identifying communities with the highest burden of air pollution health impacts. The application deadline is April 14, 2023. 

Pollution and racism 

Using new air monitoring techniques, advances in modeling, and community-based participatory research, studies confirm that neighborhoods which have experienced historical racism also experience higher levels of air pollution.

Decades of discriminatory and racist policies, practices and disenfranchisement have resulted in the disproportionate exposure to pollution sources in communities of color, along with disinvestment in housing and economic opportunities in these communities. Communities of color and areas of low wealth therefore face exposure to higher levels of air pollution and are more vulnerable to that air pollution, resulting in heavier health burdens borne by families.  

Air pollution data is only half of the story 

While air pollutant exposure is important in determining the effect of that pollutant on the health of a community, social factors and existing disease burden and risk play a large role in the impact that pollutant will have on the total health burden attributable to a pollutant in a community.  

Existing disease burdens and risks in populations are reflected in “baseline disease rates,” a key public health metric documented by public health agencies. Baseline disease rates vary within cities, but those rates are rarely made publicly available for use in risk assessment. 

Gaps in baseline disease data availability limit the ability of health impact assessments to determine which communities have existing vulnerabilities to the harmful effects of air pollution. For example, while studies of pediatric asthma attributable to nitrogen dioxide, a traffic-related air pollutant, have estimated there are 200,000 affected children living in American cities, these studies have relied on national-level estimates of asthma incidence. These national-level estimates hinder the ability of researchers to determine which areas within cities are experiencing the highest burden of asthma attributable to asthma. 

Local-level health data is needed to identify risks to overburdened communities  

The public health information available from city to city and within cities is a mix of fine-scale data (ZIP code level) and coarse-scale data (ZIP3 – aggregated data based on ZIP code information, roughly the size of counties.) The assessment of health risks, factors and outcomes can vary greatly depending on which level of data is used. 

Studies have repeatedly shown that using fine-scale baseline disease rates can make a profound difference when mapping the spatial distribution of health burdens attributable to air pollutants and on the ability to quantify disproportionate impacts in disadvantaged populations. For example, in an analysis of within-city air pollution risks in the San Francisco Bay Area of California, we found the highest census block group baseline mortality rate was 12 times higher than the rates in the census block group with the lowest rates, while the highest county rate was only four times greater than the lowest county mortality rate.

Lack of fine scale data leads to unreliable analysis 

Our work in New Jersey highlights the pitfalls of using only coarsely-resolved spatial data in identifying those communities that are at highest risk of the health burdens of air pollution. An analysis of the impact of pollution in that state found that 18,000 asthma emergency room visits by children could be attributed to fine particle pollution and 70% of those impacts were among communities of color (Asian, Black and Native American) and Hispanic populations.

Comparing the results using coarse-scale and fine-scale data, we found that:

  • Analysis using coarse-resolution emergency room visit information overestimated the burden to white populations. It underestimated the burden to people of color by as much as 90%
  • Using fine-scale data, we found emergency room visits for the ZIP code with the highest burden to be 1.5 times higher than the highest burden estimated using coarse-resolution data. 
  • We also found that using fine-scale data revealed double the variation between the ZIP code with the highest risk of PM-attributable visits and ZIP codes with the least risk of PM-attributable visits. Variation allows us to observe the relative disparities in risk within a community that are not otherwise observable with coarse-scale baseline disease data. 

The use of coarse-resolution (ZIP3) asthma emergency department visit data may underestimate PM-attributable asthma burdens (number of cases per 10,000) among non-white populations when compared to fine-scale (ZIP) data. Red shows communities where coarse-resolution health data underestimates risks.

Local-level health information can help EPA and other funders to identify and direct resources to the communities that need it most, which are too often communities of color facing legacy injustices. 

Our work in the Bay Area of California highlights the need for fine-resolution data on baseline disease rates, as pollutant concentrations alone were unable to capture the variation of air pollution health risks within Oakland.  

The maps shown in Figure 2 are of the neighborhoods of West Oakland. Looking only at the spatial distribution of the highest pollutant concentrations (A), the area of highest risk appears to be the truck traffic corridor of I-880. However, when we incorporated census block group baseline disease rates (B), provided by the Alameda County Public Health Department, we found that the area of highest risk, and therefore where the largest emission reductions could result in the largest reduction in health burden, was another area of West Oakland where both baseline mortality rates and pollution levels were elevated.  

Pollutant concentrations and county baseline disease rates alone would not have revealed this vulnerable neighborhood. A better understanding of pollution hotspots can help direct federal funds intended to address long legacies of pollution burdens to communities where they’re most needed. 

West and Downtown Oakland. The map on the left (A) shows the spatial distribution of pollutant concentrations, with high concentrations highlighted in the blue circle near major roadways. The map on the right (B) shows the spatial distribution of air pollutant attributable health burdens when the spatial distribution of underlying disease patterns are taken into consideration. The area of highest air pollutant attributable health burdens in map (B) is highlighted in the blue circle.

Ways to expand and improve local-level health data 

Past investment in satellite-derived estimates and local air pollution monitoring has resulted in making exposure disparities visible. Similar investment is required now for developing fine-scale data on baseline disease rates, which will enable identification of communities with the highest air pollution-attributable health burdens.  

Mechanisms currently exist for developing more fine-resolution data on baseline asthma emergency department visits. As part of the analysis in New Jersey described above, we purchased discharge-level emergency department visit data for New Jersey from 2016 to 2019 from the Healthcare Cost and Utilization Project’s State Emergency Department Database (HCUP SEDD). We urge the Agency for Healthcare Research and Quality, which manages the HCUP SEDD, to develop baseline asthma emergency department visit datasets and that the Agency update these datasets annually and make them publicly available. 

We recommend that health advocates and researchers work with local and state public health departments to access existing fine-scale data where available. We have found that local health departments often have the data needed but lack the resources to dedicate staff and expertise to process and analyze the information. As an example, EDF has had success working with the Alameda County Public Health Department to develop mortality rates at the census block group level. Other impediments to developing baseline disease rates include lack of funding and concerns about privacy. 

Deadlines approaching for funding opportunities to develop local-level health data 

EPA is accepting environmental justice grant applications through April 14, 2023 through two avenues: the EJ Collaborative Problem-Solving Cooperative Agreement Program (EJCPS) and the Environmental Justice Government-to-Government (EJG2G) program. 

While both grant programs are relevant to the use of local-level health data, the Government-to-Government grants allow community-based organizations to partner with their local health department on use of local-level data in health impact assessments. This can help alleviate the problem discussed above regarding inadequate staffing and expertise at local health departments.  

Of the five broad categories listed in the funding announcement, use of local-level health data fits under the category “community-led air and other pollution monitoring, prevention, and remediation, and investments in low- and zero-emission and resilient technologies and related infrastructure and workforce development that help reduce greenhouse gas emissions and other air pollutants.” 

Also posted in Air pollution, Deep Dives, Health science / Authors: , / Comments are closed