EDF Health

New bill puts BPA back in the spotlight

Sarah Vogel, Ph.D., is Director of EDF’s Health Program.

The hotly debated chemical BPA is back in the policy spotlight. This week Senator Edward Markey (D-Mass) joined Representatives Lois Capps (D-CA) and Grace Meng (D-NY) to announce the Ban Poisonous Additives (BPA) Act.  The bill would ban the use of BPA or bisphenol A from food packaging and mandates extensive consideration of the hazardous properties of any BPA alternative, so as to avoid substituting chemicals that may pose just as many health risks (as increasingly it appears to be with the case of the common BPA replacement, BPS).

Low dose exposure to BPA has been associated with a wide range of health effects including behavioral problems, prostate, breast and liver cancer as well as obesity.  A study released just last week demonstrated how low dose exposure to BPA during fetal development can alter gene expression in the mammary gland of female rats, resulting in abnormal development of the breast and increased susceptibility to breast cancer later in life.   Read More »

Also posted in Health policy, Health science / Tagged | Read 1 Response

Flame retardants impair normal brain development: Even more evidence, still no action

Jennifer McPartland, Ph.D., is a Health Scientist.

Today a new study was published linking fetal exposure to certain flame retardants called polybrominated diphenyl ethers (PBDEs) with cognitive and behavioral effects that develop later in childhood.  While the specific findings in this study are new, the link between these types of neurodevelopmental effects and exposure to PBDEs is not. 

Numerous scientific studies and governmental bodies across the globe have flagged the health effects of PBDEs.  At the same time, current proposals by the Environmental Protection Agency (EPA) to better understand the hazards and sources of certain PBDEs remain in limbo.  Read on to learn more about today’s new study on PBDEs and the stalling of EPA initiatives to help protect us from exposure to them.  Read More »

Also posted in Health policy, Health science / Tagged , , , , | Comments are closed

Better late than never: EPA finally takes first step to collect safety data on fracking chemicals

Richard Denison, Ph.D., is a Lead Senior Scientist.

Nearly two-and-a-half years after the U.S. Environmental Protection Agency  partially granted a petition filed under the Toxic Substances Control Act (TSCA) by EDF, Earthjustice, and 114 other groups calling for a rulemaking to require companies that make or process chemicals used in oil and gas production, the agency finally responded today.

This morning EPA issued what’s known as an Advanced Notice of Proposed Rulemaking (ANPRM) seeking public input on “the information that should be reported or disclosed for hydraulic fracturing chemical substances and mixtures and the mechanism for obtaining this information.” A 90-day comment period will start once the notice is published in the Federal Register next week.

What Today’s Announcement Means

The process that begins with today’s announcement is directed to manufacturers and processors of fracking chemicals and would call on them to report to EPA health- and safety-related data they have on those chemicals. Notably, it would apply not only to the presently undisclosed chemicals used in these operations, but also to hundreds of substances whose use in fracking is already widely reported, but for which little or no health or environmental safety data are available.

This effort is distinct from others aimed at drilling companies and well operators, which seek to reveal what materials are going down a well, but don’t indicate what their potential effects might be.

While much of the health and environmental effects data EPA would receive could become public and hence would complement and add valuable information to disclosure efforts, the main aim is to ensure EPA has information sufficient to understand the potential risks of the subject chemicals at an aggregate, national level.

It’s also worth noting that not all of the data reported to EPA would necessarily become available to the public; under the Toxic Substances Control Act, companies can claim certain information constitutes confidential business information, in which case EPA cannot disclose it to the public. That is, the agency would know but we would not.

A Long Road Ahead

This is only the first baby step toward initiating the rulemaking process EPA said it would undertake. EPA intends to use input it receives during the comment period to decide both how and what information should be reported.

The original petition asked the agency to require companies that make or process chemicals used in oil and gas production to: a) report basic production, processing and available health and safety information on those chemicals, and b) conduct testing to fill data gaps in the available information. In November, 2011, EPA granted the first part but denied the second, and limited the scope to just chemicals used in hydraulic fracturing. EPA said it would issue the ANPRM, and begin a stakeholder process – both of which would be used to solicit input as to the scope of the reporting rules.

It’s unfortunate that this process has taken so long, as it addresses a critical need to ensure the safety of chemicals used in fracking. It will be essential that the public engage in the development of EPA’s reporting system to ensure it delivers the needed information to EPA and maximizes public access to that information.

   

Also posted in Health policy / Tagged | Comments are closed

Getting the data on chemicals is just the beginning

Jennifer McPartland, Ph.D., is a Health Scientist.

Common sense tells us it’s impossible to evaluate the safety of a chemical without any data. We’ve repeatedly highlighted the scarcity of information available on the safety of chemicals found all around us (see for example, here and here).  Much of this problem can be attributed to our broken chemicals law, the Toxic Substances Control Act of 1976 (TSCA).

But even for those chemicals that have been studied, sometimes for decades, like formaldehyde and phthalates, debate persists about what the scientific data tell us about their specific hazards and risks.  Obtaining data on a chemical is clearly a necessary step for its evaluation, but interpreting and drawing conclusions from the data are equally critical steps – and arguably even more complicated and controversial. 

How should we evaluate the quality of data in a study? How should we compare data from one study relative to other studies? How should we handle discordant results across similar studies?  How should we integrate data across different study designs (e.g., a human epidemiological study and a fruit fly study)? These are just a few examples of key questions that must be grappled with when determining the toxicity or risks of a chemical.  And they lie at the heart of the controversy and criticism surrounding chemical assessment programs such as EPA’s Integrated Risk Information System (IRIS). 

Recently, a number of efforts have been made to systematize the process of study evaluation, with the goal of creating a standardized approach for unbiased and objective identification, evaluation, and integration of available data on a chemical.  These approaches go by the name of systematic review

Groups like the National Toxicology Program’s Office of Health Assessment and Translation (OHAT) and the UCSF-led Navigation Guide collaboration have been working to adapt systematic review methodologies from the medical field for application to environmental chemicals.  IRIS has also begun an effort to integrate systematic review into its human health assessments. 

Recently a paper in Environmental Health Perspectives (EHP) by Krauth et al. systematically identified and reviewed tools currently in use to evaluate the quality of toxicology studies conducted in laboratory animals.  The authors found significant variability across the tools; this finding has significant consequences when reviewing the evidence for chemical hazard or risk, as we pointed out in our subsequent commentary (“A Valuable Contribution toward Adopting Systematic Review in Environmental Health,” Dec 2013). 

EDF applauds these and other efforts to adopt systematic review in the evaluation of chemical safety.  Further elaboration of EDF’s perspective on systematic review can be found here

 

Also posted in Health policy, Health science / Tagged , | Comments are closed

“Epic fail” in West Virginia chemical spill: Poor information, poor communications, poor decisions

Richard Denison, Ph.D., is a Senior Scientist.

[UPDATE 1/28/14:  See updates at several places in this post regarding a 2011 Eastman safety data sheet on crude MCHM – which, though more recent than the 2005 version initally circulated, still does not reference the additional oral toxicity studies conducted by Eastman in the 1990s.]

Little more than two weeks after the January 9, 2014, spill of multiple chemicals into West Virginia’s Elk River, it’s becoming increasingly clear that the private and public sectors at all levels failed miserably with regard to protecting the public’s health.  There is plenty of blame to go around.

Our focus in the blogging we’ve done about this terrible incident has been and remains on the lack of reliable information available on the chemicals involved in the spill, the failure to promptly share what was available with the public, and the shaky science upon which decisions and public communications as to the critical safety questions were based.  In this post, I revisit several aspects of the initial and ongoing information gaps to add some additional perspective. 

I discuss in some detail below two major problems that I believe demand close examination in the Chemical Safety Board’s and others’ investigations into the causes and consequences of the spill:

  1. State and federal officials appear to have initially relied on Eastman Chemical Company’s incomplete and out-of-date Material Safety Data Sheet (MSDS) on “crude MCHM,” and as a result sowed confusion from the outset that has led to widespread public mistrust.
  2. Those same officials appear to have accepted without scrutiny the adequacy, accuracy and relevance of Eastman’s additional toxicity studies of MCHM, based only on summaries of those studies when they were finally provided by Eastman.

I end by briefly describing some of the implications of this tragic incident that need to be addressed going forward.

One caveat:  Because information on this incident has emerged in a piecemeal and haphazard manner, I cannot vouch for the accuracy of every detail provided in this post.  I have strived to the best of my ability to accurately describe the sequence and nature of events based on the available information.  Read More »

Also posted in Environment, Health policy / Tagged , , , | Read 3 Responses

Another new wrinkle on the “new” mystery chemical in West Virginia spill

Richard Denison, Ph.D., is a Senior Scientist.

Well, this story is rapidly evolving!  Even since my last blog post this morning, new information has come to light as to the identity of the “new” chemical that was present in the leaking tank that led to contamination of the drinking water in Charleston, WV.

The Charleston Gazette has now reported that Freedom Industries, the owner of the leaking tank, has told government officials that the “new” chemical is actually a mixture of two chemical products, both of them made by The Dow Chemical Company.  One of those is in fact the “DOWANOLTM PPh Glycol Ether” I discussed in my last post.  The second is a closely related Dow product called “DOWANOLTM DiPPh Glycol Ether.”   (These links are to Dow’s Material Safety Data Sheets (MSDSs) for the two products.)

The first product consists almost entirely (>99.5%) of propylene glycol phenyl ether (CAS no. 770-35-4).  The second is a mixture (see its MSDS), the main component of which (≥60%) is di-propylene glycol phenyl ether (CAS no. 51730-94-0) – a closely related chemical.

My earlier post indicated that a Dow contact had told me this morning it does not make a “stripped” version of its PPh product, and hence did not believe it was the supplier of the material to Freedom Industries.  As I noted in that post, use of the “stripped” designation to describe the “proprietary” chemical listed in the MSDS supplied yesterday by Freedom Industries for the “new” chemical had suggested the substance had somehow been further distilled.

But the latest article in the Charleston Gazette helps to clarify the situation.  It cites State officials indicating that Freedom Industries’ “PPH, stripped” is in fact a mixture of the two Dow products.

Interestingly, the MSDSs for the two Dow products reference a considerably larger amount of toxicity data than does Freedom Industries’ MSDS.  It appears, therefore, that there may be more data for officials to go on to assess potential risks associated with this “new” chemical.

Dow’s Technical Data Sheet and Product Safety Assessment for DOWANOLTM PPh Glycol Ether” list several uses for the product, none of which appear to explain why Freedom Industries would have added the product to the tank of MCHM, which is used to wash coal.

There appear to be some disconnects between Dow’s knowledge of how its own chemicals are being used and by whom, and also between the intended uses of such chemicals and their actual use.  These disconnects point to flaws in our current chemical safety policies:  chemical manufacturers often don’t have a full picture of how their chemicals are actually used, and downstream users may not have a clear picture of which uses of a chemical are appropriate or not.

The number of lessons to be drawn from this West Virginia chemical spill appears to be growing by the day.

 

Also posted in Environment, Health policy / Tagged , , , | Read 1 Response