Selected category: International

What Night-time Lights Tell us about the World and its Inhabitants

Night viewMost people are familiar with the iconic image of North Korea at night—Pyongyang stands as a beacon of light amid of what looks almost like a large body of water—but what is, in fact, land draped in complete darkness. That imagery revealed details about what was previously unknowable due to the country's cloak of secrecy—its meager electricity use and level of poverty. My colleagues Daniel Zavala-Araiza, Gernot Wagner and I took an even deeper look at how well night-time lights can account for other measures of socio-economic activity in a new article published today in the journal PLOS ONE.

I got interested in what these images could tell us back in 2012 when I started attending the Geo for Good conference, an annual event hosted by Google where nonprofits and researchers learn how to use geospatial tools such as Earth Engine. Gernot, Daniel and I started wondering what interesting applications we could explore with night-time lights data, and see what we could learn by examining the entire 21-year record of the National Oceanic and Atmospheric Administration’s Defense Meteorological Satellite Program (DMSP) at the country level. We took that dataset and compared it to a much wider scope of other datasets. By using a distributed, parallelized platform such as Earth Engine, the scope of this research and our analysis is able to be larger than prior studies.

The prevalence and magnitude of night-time light is an alternative, standardized, and relatively unbiased way to gather information about important socio-economic indicators like CO2 emissions, GDP, and other measures that would in some cases be unknowable. For example, these data helped estimate the size of the informal economy of Mexico in a 2009 study by Ghosh et al.

We’re hoping that by combining all of these methods, data sets, and tools, researchers can develop an even better understanding of how we relate to the environment, so we can ultimately become better stewards of it. Google Earth Engine, Hadoop and Spark are powerful examples of such tools —our hope is that our fellow researchers will ask and pursue new questions, so we can advance the conversation even further.

Also posted in Technology, Uncategorized| Leave a comment

How Companies Set Internal Prices on Carbon

This post was co-authored with Elizabeth Medford

Despite the uncertainty created by the recent election, companies around the globe are demonstrating a commitment to keeping climate change in check. More than 300 American companies signed an open letter to President-elect Trump urging him not to abandon the Paris agreement. Others are acting on their own to reduce emissions in their daily operations, by setting an internal price on carbon.

The number of companies incorporating an internal carbon price into their business and investment decisions has reached new heights, a recent CDP report shows, with an increase of 23 percent over last year. The more than 1,200 companies that are currently using an internal carbon price (or are planning to within two years) are using them to determine which investments will be profitable and which will involve significant risk in the future, as carbon pricing programs are implemented around the world. Sometimes, they also use them to reach emissions reduction goals.

Not all carbon prices are created equal, and companies differ in how they set their specific price. Here’s a look at some of these methods:

Incorporating Carbon Prices from Existing Policies

 Some companies set their carbon price based on policies in the countries where they operate. For example, companies with operations in the European Union might decide to use a carbon price equal to that of the European Union Emissions Trading System (EU ETS) allowances, and those operating in the Northeastern United States might adopt the carbon price that results from the Regional Greenhouse Gas Initiative market.

ConocoPhillips, for example, focuses its internal carbon pricing practices on operations in countries with existing or imminent greenhouse gas (GHG) regulation. As a result, its carbon price ranges from $6-38 per metric ton depending on the country. For operations in countries without existing or imminent GHG regulation, projects costing $150 million or greater, or that results in 25,000 or more metric tons of carbon dioxide equivalent, must undergo a sensitivity analysis that includes carbon costs.

Using Self-Imposed Carbon Fees

Others take a more aggressive approach by setting a self-imposed carbon fee on energy use. This involves setting a fee on either units of carbon dioxide generated or a proxy measurement like energy use. These programs also often include a plan for using the fees such as investment in clean energy or energy efficiency measures. This can be an effective method for incentivizing more efficient operations.

Microsoft, for example, designed its own system to account for the price of its carbon emissions. The company pledged to make its operations carbon neutral in 2012 and does so through a “carbon fee,” which is calculated based on the costs of offsetting the company’s emissions through clean energy and efficiency initiatives. Each business group within Microsoft is responsible for paying the fee depending on how much energy it uses. Microsoft collects the fees in a “central carbon fee fund” used to subsidize investments in energy efficiency, green power, and carbon offsets projects. Still, by limiting carbon fees to operational activities, Microsoft has yet to address a large chunk of their emissions.

Setting Internal Carbon Prices to Reach Emissions Reduction Targets

 Other companies set an internal carbon price based on their self-adopted GHG emissions targets. This involves determining an emissions reduction goal and then back-calculating a carbon price that will ensure the company achieves its goal by the target date. This method is a broader approach focused more on significantly reducing emissions while also mitigating the potential future risk of carbon pricing policies.

Novartis, a Swiss-based global healthcare company, uses a carbon price of $100/tCO2 and cites potential climate change impacts as a motivator. The company has its own greenhouse gas emissions target, which it is using to cut emissions to half of its 2010 levels by 2030. These internal policies mean that Novartis, which is included in the European Union’s Emissions Trading Scheme (EU ETS), has been able to sell surplus allowances and thus far avoid an increase in operating costs.

Where we go from here

 While these internal carbon pricing activities are welcome – and we hope they continue – they are not sufficient to reduce greenhouse gases to the degree our nation or world requires. Like these forward thinking companies, nations around the world, including the United States, need to consider the costs of inaction, including the climate-related costs, to avoid short-sighted investments. Ultimately, we will need public policies that put a limit and a price on carbon throughout the economy.

The spread of internal carbon pricing could signal greater support for carbon pricing by governments. But companies can do more: the ultimate test of a company’s convictions and commitment to carbon pricing might be their willingness to advocate for well-designed, ambitious policies that achieve the reductions we need.

Also posted in Cap and Trade, Politics| Leave a comment

The Atlantic's year-end feature "Hope & Despair"

Lucy Nicholson / Reuters / Zak Bickel / The Atlantic

Lucy Nicholson / Reuters / Zak Bickel / The Atlantic

Reason for despair: Climate change. It’s the perfect problem: more global, more long-term, more irreversible, and more uncertain that virtually any other public-policy problem facing us. Climate change is a lot worse than most of us realize. Almost regardless of what we do on the mitigation front, we are in for a whole lot of hurt.

On the policy front, we have now talked for more than 20 years about how we need to turn this ship around “within a decade.” Not unlike the ever-elusive fusion technology, that hasn’t happened yet. Global carbon emissions declined slightly this year—for the first time ever without a global recession—but the trends are still pointing in the wrong direction. Worse, turning around emissions is only the very first step. It’s not enough to stabilize the flow of water going into the bathtub when the goal is to prevent the tub from overflowing. We need to turn around atmospheric concentrations of greenhouse gases. That means turning off the flow of water into the tub—getting net emissions to zero and below. It doesn’t help our efforts that many people seem to confuse the two. A study involving over 200 MIT graduate students faced with this same question revealed that even they confuse emissions and concentrations—water flowing into the tub and water levels there. If MIT graduate students can’t get this one right, what hope is there for the rest of us?

Reason for hope: Climate change. Many signs point to some real momentum to finally tackle this momentous challenge.

The Paris Climate Accord builds an important foundation. It enables transparency, accountability, and markets to help solve the problem. Many governments are moving forward with pricing carbon: from California to China, from Sweden to South Africa, we see ambitious action to reign in emissions in some 50 jurisdictions. Meanwhile, lots is happening on the clean-energy front. That’s particularly true for solar photovoltaic power, which has climbed up the learning curve—and down the cost curve—faster than most would have expected only five years ago. That has also provided an important jolt for sensible climate policy. Then there’s R&D for entirely new technologies. Bill Gates leading an investment coalition with $1 billion of his own money is only one important sign of movement in that direction. The excitement for self-driving, electric vehicles is palpable up and down Silicon Valley, to name just one potentially significant example. In the end, it’s precisely this mix of Silicon Valley, Wall Street, and, of course, Washington that will lead—and, in part, is already leading—to the necessary revolution in a number of important sectors, energy and transportation chief among them.

Excerpt from The Atlantic's year-end feature on Hope and Despair: "Can the Planet Be Saved?"

Also posted in Cap and Trade, Politics, Technology| Leave a comment

From climate finance to finance

IETA 2015 Making WavesClimate finance is lots of things to lots of people. For some, it’s the $100 billion “Copenhagen commitment”. For others, it’s Citi’s latest sustainable finance pledge of $100 billion. It’s Bill Gates’s $1 billion clean energy investment. It’s public and private monies; mitigation and adaptation; loans, bonds, equity stakes, high-risk ventures, Kyoto-style allowances, offset credits, and private and public grants. It’s all of the above. When it comes to carbon markets, climate finance is often about what happens with allowance revenue. That's important. But the primary goal is, or ought to be, appropriately pricing the climate externality.

It’s about nudging massive private investment flows from the current high-carbon, low-efficiency path toward a low-carbon, high-efficiency one. That, in turn, means focusing on the incremental dollars necessary to sway private investments. In the end, it’s all about the margin.

Righting the wrong incentives

The incentives facing many private actors today are clearly misleading. Benefits, for the most part, are fully privatised, while many costs are socialised. That goes in particular for environmental and climate costs. The ‘hidden’ costs of energy investments are large and negative. While largely invisible to those doing the polluting, these costs are all too visible to society as a whole: in form of costs to health, ecosystems, and the economy. In the United States, for example, every additional tonne of coal, every barrel of oil, causes more in external damages than it adds value to GDP. That calculation does not even consider the large carbon externality.

There, one of the more important metrics is the so-called ‘social cost of carbon’. The US government’s central estimate is $40 per tonne of CO2 released today. The true number is likely a lot higher, especially when considering the many ‘known unknowns’ not quantified (and sometimes not quantifiable). Regardless of the precise amount, it’s the cost to society — to the economy, health, ecosystems, the whole lot — of each tonne of CO2 released today over its lifetime.

The social cost itself is inherently a marginal concept. While all of us seven billion pay a fraction of a penny of the social cost for each of the billions of tonnes emitted today, few of those doing the actual polluting pay themselves. A price on carbon, through cap and trade or a carbon tax, ensures that anyone covered by the market forces faces the right incentives. Polluters face a direct cost of pollution and, thus, are driven to pollute less. The law of demand at work.

Incentives at work

One of the guiding principles of economics is that people are motivated by incentives. That’s not too surprising. It would be surprising if people were not motivated by what is designed to motivate them. When faced with a price on carbon, emissions go down, and investments change course.

At the level of individual businesses, solid evidence points to how existing carbon prices have incentivised investment in clean technology, research and development.

In places with no external carbon price, investments can be affected by internal carbon pricing. The Carbon Disclosure Project counts over 400 companies with an internal, ‘shadow’ carbon price, either independently or in reaction to an external market price. That price, in turn, figures into day-to-day decisions from where to site a new facility to how to source energy.

In 1999, the World Bank conducted a study to determine the impact of a shadow price for carbon on the Bank’s investments. At an internal price of $40, the highest evaluated price, almost half of the analysed investments would have had a negative net present value, and, thus, would likely not have been made. For the rest, profitability would have been significantly reduced.

Individual investments, if organised at a large enough scale, make the difference. Take the Clean Development Mechanism (CDM), a market-based mechanism that channels funding to emission reduction projects in developing countries. Countries and investors can invest in CDM projects as a way of meeting domestic reduction goals, or complying with domestic carbon prices. Through the CDM, hundreds of billions of private sector dollars have gone towards funding GHG mitigation.

With a government-imposed carbon price, reflecting the true cost of carbon to society, investment portfolios would change. Drastically. We’ve seen it in practice, but the current scale is not large enough to sway the majority of investments that matter. Today, in fact, much of firms’ investments towards mitigating climate change are made voluntarily.

From Climate Finance to Finance

Climate finance often is ‘concessional’ finance. That might be outright development aid. It also includes voluntary commitments like Citi’s $100 billion. Citi, of course, is not alone. Goldman Sachs committed $40 billion in 2012, Bank of America $50 billion in 2013, all made over 10 years. Meanwhile, these three banks alone underwrite hundreds of billions of loans every year. Total global Foreign Direct Investment is in the trillions.

These massive financial flows won’t be redirected overnight. But they do follow incentives. In fact, that’s all they follow.

Enter carbon markets. They ensure that anyone covered by the market faces the right incentives. The prevailing allowance price is one good proxy of the level of ambition of any particular market. It’s also what helps nudge investments into the right direction. In econ-speak, it’s all about internalising externalities. In English, it’s about paying your fair share and no longer socialising costs.

None of that renders what’s traditionally called ‘climate finance’ unnecessary. There are still plenty of uses for additional monies. In particular, carbon markets are all about mitigation. Adaptation might dovetail nicely on some forms of mitigation, but it’s not the primary goal. That’s where foreign aid as well as government and private grants come in. If anything, those amounts need to be scaled up, too.

But the true scaling happens on the investment front. That’s no longer “climate finance.” It’s simply “finance.” Re-channelling only 0.1% of total wealth under active management globally amounts to around a $100 billion shift. Efforts, of course, must not stop there. It’s about channelling the full $100 trillion into the right direction.

Gernot Wagner is lead senior economist at the Environmental Defense Fund, and co-author, with Harvard’s Martin L. Weitzman, of Climate Shock (Princeton University Press, 2015).

This article was first published in IETA's Greenhouse Gas Market 2015 report "Making Waves". Download the full text in PDF form.

Also posted in Cap and Trade, Politics| Leave a comment

When dealing with global warming, the size of the risk matters

Shortly after September 11, 2001, Vice President Dick Cheney gave us what has since become known as the One Percent Doctrine: “If there’s a 1% chance that Pakistani scientists are helping al-Qaeda build or develop a nuclear weapon, we have to treat it as a certainty in terms of our response.”

It inspired at least one book, one war, and many a comparison to the "precautionary principle" familiar to most environmentalists. It’s also wrong.

One percent isn’t certainty. This doesn’t mean that we shouldn’t take the threat seriously, or that the precautionary principle is wrong, per se. We should, and it isn’t.

Probabilities matter.

Take strangelets as one extreme. They are particles with the potential to trigger a chain reaction that would reduce the Earth to a dense ball of strange matter before it explodes, all in fractions of a second.

That’s a high-impact event if there ever was one. It’s also low-probability. Really low probability.

At the upper bound, scientists put the chance of this occurring at somewhere between 0.002% and 0.0000000002% per year, and that’s a generous upper bound.

That’s not nothing, but it’s pretty close. Should we be spending more on avoiding their creation, or figuring out if they’re even theoretically possible in the first place? Sure. Should we weigh the potential costs against the social benefit that heavy-ion colliders at CERN and Brookhaven provide? Absolutely.

Should we “treat it as a certainty” that CERN or Brookhaven are going to cause planetary annihilation? Definitely not.

Move from strangelets to asteroids, and from a worst-case scenario with the highest imaginable impact, but a very low probability, to one with significantly higher probability, but arguably much lower impact.

Asteroids come in all shapes and sizes. There’s the 20-meter wide one that unexpectedly exploded above the Russian city of Chelyabinsk in 2013, injuring mored than 1,400 people. And then there are 10-kilometer, civilization-ending asteroids.

Size matters.

No one would ask for more 20-meter asteroids, but they’re not going to change life on Earth as we know it. We’d expect a 10-kilometer asteroid, of the type that likely killed the dinosaurs 65 million years ago, once every 50-100 million years. (And no, that does not mean we are ‘due’ for one. That’s an entirely different statistical fallacy.)

Luckily, asteroids are a surmountable problem. Given $2 to $3 billion and 10 years, a National Academy study estimates that we could test an actual asteroid-deflection technology. It’s not quite as exciting as Bruce Willis in Armageddon, but a nuclear standoff collision is indeed one of the options frequently discussed in this context.

That’s the cost side of the ledger. The benefits for a sufficiently large asteroid would include not destroying civilization. So yes, let’s invest the money. Period.

Somewhere between strangelets and asteroids rests another high-impact event. Unchecked climate change is bound to have enormous consequences for the planet and humans alike. That much we know.

What we don’t know — at least not with certainty — could make things even worse. The last time concentrations of carbon dioxide stood where they are today, sea levels were up to 20 meters higher than today. Camels lived in Canada. Meanwhile global average surface temperatures were only 1 to 2.5 degrees Celsius (1.8 to 4.5 degrees Fahrenheit) above today's levels.

Now imagine what the world would like with temperature of 6 degrees Celsius (11 degrees Fahrenheit) higher. There’s no other way of putting it than to suggest this would be hell on Earth.

And based on a number of conservative assumptions, my co-author Martin L. Weitzman and I calculate in Climate Shock that there might well be a 10% chance of an eventual temperature increase of this magnitude happening without a major course correction.

That’s both high-impact and high-probability.

Mr. Cheney was wrong in equating 1% to certainty. But he would have been just as wrong if he had said: "One percent is basically zero. We should just cross our fingers and hope that luck is on our side."

So what to do? In short, risk management.

We insure our homes against fires and floods, our families against loss of life, and we should insure our planet against the risk of global catastrophe. To do so, we need to act — rationally, deliberately, and soon. Our insurance premium: put a price on carbon.

Instead of pricing carbon, governments right now even pay businesses and individuals to pump more carbon dioxide into the atmosphere due to various energy subsidies, increasing the risk of a global catastrophe. This is crazy and shortsighted, and the opposite of good risk management.

All of that is based on pretty much the only law we have in economics, the Law of Demand: price goes up, demand goes down.

It works beautifully, because incentives matter.

Gernot Wagner serves as lead senior economist at the Environmental Defense Fund and is co-author, with Harvard’s Martin Weitzman, of Climate Shock (Princeton, March 2015). This op-ed first appeared on

Also posted in Climate science, Politics| Leave a comment

“Naomi Klein wants to stick it to the man. I want to stick it to CO2.″

By Jonathan Derbyshire, Prospect Magazine's The world of ideas.

Jonathan DerbyshireWhy is it so difficult to get people to worry about climate change? After all, the science is pretty unambiguous—pace the climate change “deniers”. Part of the problem, according to a new book, “Climate Shock,” by the economists Gernot Wagner and Martin L Weitzman, is that while what we know about global warming is bad enough, there are “unknown risks that may yet dwarf all else.”

Wagner, who is lead senior economist at the Environmental Defense Fund in the United States, visited London a couple of weeks ago. I caught up with him while he was here and talked to him about the difficulties of mobilising public opinion around the threats and challenges of climate change. 

GW: The big problem, frankly, is speaking the truth and talking about what scientists actually know and what they don’t know, which in many ways is even scarier. Saying the latest science out loud is [often taken to be] akin to catastrophising. That’s the big conundrum: on the one hand, “climate shock” shouldn’t be all that shocking—we’ve known this for quite a while. The problem is finding a way to state the scientific facts in a way that does not turn people off immediately.

JDSo it’s partly a public relations or political challenge then?

It’s more than that. Political, certainly. But it’s also a science communications challenge.

You mentioned scientific uncertainty just now. The book is, among other things, an attempt to deal with the challenge of climate change and the policymaking challenges from an economic perspective. But it’s also, it seems to me, a work of epistemology, almost—it’s a reflection on uncertainty and the implications that uncertainty has for policymaking.

Most books are written about what we know. This book is about what we don’t know. We clearly know enough to act. We’ve known enough to act for years, decades. Now, the more we find out, the more apparent it gets that what we don’t know is in fact potentially much, more worse. Choose you favourite analogy here—Nassim Nicholas Taleb’s “black swans,” Donald Rumsfeld’s “unknown unknowns”. That’s what it’s all about. The things we don’t know will most likely be the things that bite us in the back.

This is one of the things that makes climate change a public policy challenge unlike any other.

Climate change is uniquely long-term. It is uniquely global. It is uniquely irreversible and uniquely uncertain. You could probably identify other policy issues that combine two of those four factors, but none that I know of combines all four like climate change [does].

Continue reading in Prospect Magazine.

Also posted in Climate science, Politics| Leave a comment
  • About This Blog

    EDF economists discuss how to make markets work for the environment.

  • Get blog posts by email

    Subscribe via RSS

  • Categories