Category Archives: Geoengineering

IPCC mention of geoengineering, though brief, opens window for discussion

The IPCC's latest report includes a brief mention of geoengineering — a range of techniques for reducing global warming through intervention in the planet’s climate system. (Photo credit: NASA)

(Originally posted yesterday on EDF’s Climate Talks blog)

Just a few weeks ago, the United Nations Intergovernmental Panel on Climate Change (IPCC) released the first piece of their fifth crucial report on global warming – and it confirms that our climate is changing. Key messages from the report include:

  • Warming of the climate is unequivocal
  • Human influence on the climate system is clear, and the evidence for human influence has only increased since the last IPCC report
  • Further changes in temperature, precipitation, weather extremes, and sea level are imminent

In short, humans are causing dramatic climate change—and we’re already witnessing the effects. Oceans are warming and acidifying. Weather patterns are more extreme and destructive. Land-based ice is declining—and leading to rising sea levels.

None of this should be surprising to those following the science of climate change. What has generated surprise amongst some, however, is the IPCC’s brief mention of the science of geoengineering, tucked into the last paragraph of the IPCC’s 36-page “Summary for Policymakers.”

Understanding the science of geoengineering

As communities and policymakers around the world face the risks presented by a rapidly changing climate, interest in the topic of “geoengineering” is growing.

Geoengineering refers to a range of techniques for reducing global warming through intervention in the planet’s climate system, by removing carbon dioxide from the atmosphere (carbon dioxide removal, or CDR) or by reflecting away a small percentage of inbound sunlight (solar radiation management, or SRM).

Some of these ideas have been proposed by scientists concerned about the lack of political progress in curbing the continued growth in global carbon emissions, and who are looking for other possibilities for addressing climate change if we can’t get emissions under control soon.

With the risks and impacts of rising temperatures already being felt, the fact that SRM would likely be cheap to deploy and fast-acting means that it has attracted particular attention as one possible short-term response to climate change.

The world’s governments tasked the IPCC with investigating these emerging technologies in its new report, and the IPCC summary rightly sounds a cautionary note on their potential utility, warning:

Limited evidence precludes a comprehensive quantitative assessment of both Solar Radiation Management (SRM) and Carbon Dioxide Removal (CDR) and their impact on the climate system…

Modelling indicates that SRM methods, if realizable, have the potential to substantially offset a global temperature rise, but they would also modify the global water cycle, and would not reduce ocean acidification. If SRM were terminated for any reason, there is high confidence that global surface temperatures would rise very rapidly to values consistent with the greenhouse gas forcing. CDR and SRM methods carry side effects and long-term consequences on a global scale.

So what does this mean? Three things are clear from the IPCC’s brief analysis:

  1. CDR and SRM might have benefits for the climate system, but they also carry risks, and at this stage it is unknown what the balance of benefits and risks may be.
  2. The overall effects of SRM for regional and global weather patterns are likely to be uncertain, unpredictable, and broadly distributed across countries. As with climate change itself, there would most likely be winners and losers if SRM technologies were to be used.
  3. Finally, and perhaps most importantly, SRM does not provide an alternative to reducing greenhouse gas emissions, since it does not address the rising emissions that are the root cause of ocean acidification and other non-temperature related climate change impacts.

This last point is particularly important. The most that could be expected from SRM would be to serve as a short-term tool to manage some temperature-related climate risks, if efforts to reduce global greenhouse gas emissions prove too slow to prevent severe disruption of the earth’s climate.

In that case, we need to understand what intervention options exist and the implications of deploying them. In other words, ignorance is our enemy.

Need for inclusive and adaptive governance of solar radiation management research

While much of the limited research on solar radiation management has taken place in the developed world – a trend likely to continue for the foreseeable future – the ethical, political, and social implications of SRM research are necessarily global. Discussions about governance of research should be as well.

But a transparent and transnationally agreed system of governance of SRM research (including norms, best practices, regulations and laws) does not currently exist. With knowledge of the complex technical, ethical, and political implications of SRM currently limited, an effective research governance framework will be difficult to achieve until we undertake a broad conversation among a diversity of stakeholders.

Recognizing these needs, The Royal Society, Environmental Defense Fund (EDF), and TWAS (The World Academy of Sciences) launched in 2010 an international NGO-driven initiative to explore how SRM research could be governed. SRMGI is neither for nor against SRM. Instead, it aims to foster inclusive, interdisciplinary, and international discussion on SRM research and governance.

SRMGI’s activities are founded on a simple idea: that early and sustained dialogue among diverse stakeholders around the world, informed by the best available science, will increase the chances of SRM research being handled responsibly, equitably, and cooperatively.

Connecting dialogues across borders

A key goal is to include people in developing countries vulnerable to climate change and typically marginalized in discussions about emerging science and technology issues, to explore their views on SRM, and connect them in a transnational conversation about possible research governance regimes.

This month, for example, saw the launch of a report by the African Academy of Sciences and SRMGI describing the results from a series of three SRM research governance workshops held in Africa in 2012 and 2013. Convened in Senegal, South Africa, and Ethiopia, the workshops attracted more than 100 participants – including scientists, policymakers, journalists and academics – from 21 African nations to explore African perspectives on SRM governance.

To build the capacity for an informed global dialogue on geoengineering governance, a critical mass of well-informed individuals in communities throughout the world must be developed, and they must talk to each other, as well as to their own networks. An expanding spiral of distinct, but linked outreach processes could help build the cooperative bridges needed to manage potential international conflicts, and will help ensure that if SRM technologies develop, they do so cooperatively and transparently, not unilaterally.

The way forward

No one can predict how SRM research will develop or whether these strategies for managing the short-term implications of climate risk will be helpful or harmful, but early cooperation and transnational, interdisciplinary dialogue on geoengineering research governance will help the global community make informed decisions.

With SRM research in its infancy, but interest in the topic growing, the IPCC report reminds us that now is the time to establish the norms and governance mechanisms that ensure that where research does proceed, it is safe, ethical, and subject to appropriate public oversight and independent evaluation.

It’s worth remembering that the IPCC devoted only one paragraph of its 36-page summary report to geoengineering. So while discussion about geoengineering technologies and governance is necessary, the key message from the IPCC must not be lost: it’s time to recognize that the billions of tons of carbon pollution we put in our atmosphere every year are causing dangerous changes to our climate, and work together to find the best ways to reduce that pollution.

Also posted in Greenhouse Gas Emissions, News, Science| Comments closed

Geoengineering: Ignore Economics and Governance at Your Peril

How serious is global warming? Here’s one indication: the first rogue entrepreneurs have begun testing the waters on geoengineering, as Naomi Klein laments in her must-read New York Times op-ed.

Sadly, Klein misses two important points.

First, it’s not a question of if but when humanity will be compelled to use geoengineering, unless we change course on our climate policies (or lack thereof). Second, all of this calls for more research and a clear, comprehensive governance effort on the part of governments and serious scientists – not a ban of geoengineering that we cannot and will not adhere to. (See point number one.)

Saying that we ought not to tinker with the planet on a grand scale – by attempting to create an artificial sun shield, for example – won’t make it so. Humanity got into this mess thanks to what economists call the “free rider” effect. All seven billion of us are free riders on the planet, contributing to global warming in various ways but paying nothing toward the damage it causes. No wonder it’s so hard to pass a sensible cap or tax on carbon pollution. Who wants to pay for something that they’re used to doing for free – never mind that it comes at great cost to those around them?

It gets worse: Turns out the same economic forces pushing us to do too little on the pollution front are pushing us toward a quick, cheap fix – a plan B.

Enter the Strangelovian world of geoengineering – tinkering with the whole planet. It comes in two distinct flavors:

  • Sucking carbon out of the atmosphere;
  • Creating an artificial sun shield for the planet.

The first involves reversing some of the same processes that cause global warming in the first place. Instead of taking fossil fuels out of the ground and burning them, we would now take carbon dioxide out of the atmosphere and bury it under ground. That sounds expensive, and it is. Estimates range from $40 to $200 and more per ton of carbon dioxide – trillions of dollars to solve the problem.

That brings us to the second scary flavor – which David Keith, a leading thinker on geoengineering, calls “chemotherapy” for the planet. The direct price tag to create an artificial sun shield: pennies per ton of carbon dioxide. It’s the kind of intervention an island nation, or a billionaire greenfinger, could pay for.

You can see where economics enters the picture. The first form of geoengineering won’t happen unless we place a serious price on carbon pollution. The second may be too cheap to resist.

In a recent Foreign Policy essay, Harvard’s Martin Weitzman and I called the forces pushing us toward quick and dirty climate modification “free driving.” Crude attempts to, say, inject sulfur particles into the atmosphere to counter the carbon dioxide that's already there would be so cheap it might as well be free. We are talking tens or hundreds of millions of dollars a year. That’s orders of magnitude cheaper than tackling the root cause of the problem.

Given the climate path we are on, it’s only a matter of time before this “free driver” effect takes hold. Imagine a country badly hit by adverse climate changes: India’s crops are wilting; China’s rivers are drying up. Millions of people are suffering. What government, under such circumstances, would not feel justified in taking drastic action, even in defiance of world opinion?

Once we reach that tipping point, there won’t be time to reverse warming by pursuing collective strategies to move the world onto a more sustainable growth path. Instead, speed will be of the essence, which will mean trying untested and largely hypothetical techniques like mimicking volcanoes and putting sulfur particles in the stratosphere to create an artificial shield from the sun.

That artificial sunscreen may well cool the earth. But what else might it do? Floods somewhere, droughts in other places, and a host of unknown and largely unknowable effects in between. That’s the scary prospect. And we’d be experimenting on a planetary scale, in warp speed.

That all leads to the second key point: we ought to do research in geoengineering, and do so guided by sensible governance principles adhered to be all. We cannot let research get ahead of public opinion and government oversight. The geoengineering governance initiative convened by the British Royal Society, the Academy of Sciences for the Developing World, and the Environmental Defense Fund is a necessary first step in the right direction.

Is there any hope in this doomsday scenario? Absolutely. Country after country is following the trend set by the European Union to institute a cap or price on carbon pollution. Australia, New Zealand, South Korea, and also California are already – or will soon be – limiting their carbon pollution. India has a dollar-a-ton coal tax. China is experimenting with seven regional cap-and-trade systems.

None of these is sufficient by itself. But let’s hope this trend expands –fast – to include the really big emitters like the whole of China and the U.S., Brazil, Indonesia, and others. Remember, the question is not if the “free driver” effect will kick in as the world warms. It’s when.

Also posted in Economics, Science| Tagged , | 1 Response, comments now closed

Geo-Engineering: Methadone for Carbon Addiction

Lisa Moore's profileWhat if, instead of reducing the greenhouse gas concentrations that hold excess heat in our atmosphere, we injected something in the atmosphere to reflect sunlight back into space? That's the idea behind sulfate geo-engineering. As Bill wrote in his post "Can we engineer our way out?", there are a plethora of problems with geo-engineering, but scientists still study it as an option of last resort.

The idea of injecting sulfates into the atmosphere is based on the observation that large volcanic eruptions can cause short-term global cooling. But in addition to the usual problems with geo-engineering (for example, it does nothing to stop ocean acidification from excess CO2), scientists have found a new one. Sulfate geo-engineering could endanger food and water supplies for billions of people in Africa and Asia, according to a recent paper in the Journal of Geophysical Research [PDF].

Read More »

Posted in Geoengineering| 3 Responses, comments now closed

Video on Carbon Capture and Sequestration

Sheryl CanterThis post is by Sheryl Canter, an online writer and editorial manager at Environmental Defense Fund.

Our own Scott Anderson is one of the experts featured in a new video on Carbon Capture and Sequestration (CCS). The video explains why CCS is an important tool in cutting emissions, and gives an animated description of how it works. It's a good companion to Scott's blog post on CCS.

Posted in Geoengineering| 1 Response, comments now closed

Sequestering Carbon Deep Within the Earth

Scott AndersonThis post is by Scott Anderson, an attorney and senior policy advisor at the Environmental Defense Fund. It's the second in a three-part series on carbon sequestration – storing carbon or carbon dioxide (CO2) in soils, trees, geological formations, and oceans.

1. Biological Sequestration
2. Geological Sequestration
3. Ocean Sequestration


To stop global warming, the U.S. must substantially move away from carbon-emitting fossil fuels to clean renewable energy. But a transition of this magnitude takes time. Right now this country is heavily dependent on coal for electricity, and traditional coal plants are none too clean.

How do we stop global warming while renewable technologies to meet our energy needs are still under development? Part of the answer may lie in an emerging transition technology called Carbon dioxide (CO2) Capture and Storage (CCS). The idea behind CCS is to capture the CO2 from industrial processes like coal plants, and then store it in deep geological formations.

Read More »

Posted in Geoengineering| 12 Responses, comments now closed

Sequestering Carbon in Soil and Trees

Martha RobertsThis post is by Martha Roberts, an economist at Environmental Defense. It's the first of a three-part series on carbon sequestration – storing carbon or carbon dioxide (CO2) in soils, trees, geological formations, and oceans.

1. Biological Sequestration
2. Geological Sequestration
3. Ocean Sequestration


Global warming is occurring because – day after day, hour after hour – human activities pump large amounts of greenhouse gases into the atmosphere. One way to decrease emissions is to store carbon or CO2 someplace other than the atmosphere.

There are two vastly different ways of sequestering carbon: biological and geological. The topic of this post is biological sequestration, which is among the biggest of the "low hanging fruits" for making quick, substantial cuts in emissions.

Read More »

Posted in Geoengineering| 15 Responses, comments now closed

Climate News: Geo-engineering, Soot and Deforestation

Guest blogger Lisa Moore, Ph.D., is a scientist in the Climate and Air Program.

There's always something new in climate change research. This week, scientists described the risks of geo-engineering, proposed an efficient way to reduce Arctic climate change, and discussed options for decreasing deforestation in developing countries.

Read More »

Also posted in Arctic & Antarctic| 1 Response, comments now closed

Can We Engineer Our Way Out?

Yesterday I talked about the phenomenon of "global dimming", where pollution particles suspended in the atmosphere reflect sunlight back into space. Because they cause less sunlight to hit the Earth, these particles also cool the planet.

So here's an idea for fighting global warming. Instead of trying to reduce greenhouse gas pollution – the root cause of the problem – why not use technology to counteract the effect of the pollution? For example, we could artificially add to the planet's reflectivity so that the warming is cancelled by the cooling.

Read More »

Posted in Geoengineering| 5 Responses, comments now closed

Vacuum Up Greenhouse Gases?

Everybody's always talking about reducing greenhouse gas emissions. What you don't hear so often is a suggestion to clean up what's already there. How would you do that? Good question! And it's the question that Virgin Earth Challenge is posing to the world. Come up with a commercially viable way to remove a billion tons of CO2 from the atmosphere per year, and win $25 million.

Read More »

Posted in Geoengineering| 5 Responses, comments now closed
  • About this blog

    Expert to expert commentary on the science, law and economics of climate change.

  • Get blog posts by email

    Subscribe via RSS

  • Meet The Bloggers

    Megan CeronskyMegan Ceronsky
    Attorney

    Nat KeohaneNat Keohane
    Vice President for International Climate

    Ilissa Ocko
    High Meadows Fellow, Office of Chief Scientist

    Peter Zalzal
    Staff Attorney

    Gernot Wagner
    Senior Economist

    Graham McCahan
    Attorney

    Mandy Warner
    Climate & Air Policy Specialist

    Pamela Campos
    Attorney

    Kritee
    High Meadows Scientist

  • Posts by topic

  • Archives