Market Forces

How China is cleaning up its air pollution faster than the post-Industrial UK

Beijing has seen some of the lowest air pollution levels in recent history this past winter, just as China’s Ministry of Environmental Protection (MEP) – now strengthened and renamed to Ministry of Ecology and Environment (MEE) – has put the final touches on a new, three-year plan to improve air quality. But while the trend is positive, air pollution levels in China are still dire: The MEP calculates an annual average PM2.5 concentration of 43 µg/m3 for China’s cities in 2017, more than 4 times the level of 10 µg/m3 recommended by the WHO. Official measurements for Beijing even showed the capital’s air quality at 58 µg/m3

Still, China is cleaning up its air faster than the United Kingdom did after its Industrial Revolution. Despite this early success, however, China could spark even more efficient improvements by adopting market-based incentives.

Let’s take a look at how both countries fared immediately after each of their industrial booms.

Figure notes: The figure shows annual average concentrations of total suspended particles (TSP), a coarse and now outdated measure of air pollution. The black line shows the average for China, while the grey line shows London. Data sources: TSP concentrations for China through 2003 are based on the China Energy Databook 9.0 based on data provided by State Environmental Protection Administration. From 2004 on, TSP concentrations for China are based on author-collected air pollution index (API) data from the MEP datacenter. I imputed PM10 concentrations based on information on the main pollutant on a given day and the assumption that an API reading below 51 reflects PM10 (see Stoerk 2016 for explanations on the procedure). I then converted the PM10 concentrations into TSP using a conversion factor of 2 following Matus et al. 2012. TSP concentrations for London come from Fouquet 2011, who generously shared his dataset.

 

Air quality in London is far from perfect, but it’s also come a long way from the days when people died in the “Great Smog.” The graphic above brings together the earliest known air pollution data from China, from 1980 to 2012, and from the UK from the Industrial Revolution until 2008. Air pollution levels in the main Chinese cities at the beginning of the 1980s were almost exactly at the level of London at the height of the Industrial Revolution in 1890 (a shocking outlier is Hohhot, the capital of Inner Mongolia, which reached a concentration of Total Suspended Particles of 1,501 µg/m3 in 1987, possibly the highest level of urban air pollution in recorded history).

The difference is in the speed of improvements: Air pollution in China has been decreasing at a similar trajectory as London’s 90 years earlier, but at twice the pace. While extreme air pollution levels in China’s recent history are typical for an industrializing economy, its pace in cleaning up the pollution is fast by historical standards.

China started to seriously control air pollution from 2006 to 2010 by limiting emissions for each province. Relying on satellite data, my research shows that this first attempt was ultimately successful in reducing nationwide SO2 emissions by over 10 percent relative to 2005. Studying compliance over time, however, suggests that reductions in air pollution only happened after the Chinese government created the MEP in 2008. After its creation, among the many changes in environmental policy, the MEP started to gather reliable SO2 emissions data from continuous emissions monitoring systems (CEMS) at the prefecture level and increased the number of enforcement officials by 17 percent (a task that EDF China actively supported).

This early success notwithstanding, China could do better by implementing well-designed market-based solutions, policies that align with the country’s ambition to combine economic prosperity and environmental protection. Or, in the words of President Xi, to combine ‘green mountains and gold mountains’.

For example, a well-designed cap-and-trade program at the province level could have decreased the cost of air pollution abatement from 2006 to 2010 by 25% according to my research. The anticipated launch of a sectoral emissions trading system to limit a portion of China’s greenhouse gas emissions suggests that the Chinese government is looking to embrace lessons learned in air pollution control and wishes to build on its own pilot market-based pollution control programs to bring its environmental policy into the 21st century.

EDF is playing a key role in helping this endeavor through both hands-on policy work and research. The timing is serendipitous: China is at a cross-roads in environmental policy. Evidence based policy making is welcome. And data quality has improved in recent years. Given the right set of policies, countries can control air pollution, and improvements in air quality typically go hand in hand with economic prosperity.

Both China and London have remaining challenges. Despite dramatic improvements, Londoners, like the Chinese, still live with significant air pollution. A recent report on London’s air pollution found the city is not close to meeting WHO standards. Meeting them will be a challenge, in part because of the complexity of the causes (road transport accounts for over half of local contributions). So just as London must keep battling to improve air quality, Beijing will need to do likewise–but at least now each can now learn from the other.

Posted in air pollution, china, International / Leave a comment

Why climate policy is good economic policy

More than 200 world leaders met over the last few days at the United Nations’ Annual Climate Change Conference in Bonn to discuss how to fill in the details of individual countries’ pledges of the Paris agreement. And while the United States has clearly ceded its leadership role to China, Germany, France, Canada and others, there are clear signs that adopting an ambitious climate policy is smart for long-term economic prosperity.

Economists across the political spectrum agree that the market alone will not solve climate change, because carbon pollution is still largely unpriced. From an ideal point of view, the optimal climate policy would be a global carbon price. If an appropriate and sufficiently robust global carbon price existed, with clear declining limits on pollution, no other climate policy would be needed.

Unfortunately, such a carbon policy does not currently exist. So, in the absence of such a global pricing regime, what kind of climate policy is cost-effective?   Each individual climate policy can be judged on its merits, and most typically show large economic gains, as the benefits of avoiding climate change far outweigh the costs.

Ambitious climate policy passes a benefit-cost test by using the Social Cost of Carbon

To understand the benefit of climate policy, we first need a sense on the magnitude of the climate damages that can be avoided. The current economic consensus view quantifies the social cost of carbon – that is the damage from emitting one ton of CO2 – at $42 per metric ton of CO2 emissions in 2007 U.S. Dollars based on work by the U.S. Government’s Interagency Working Group on Social Cost of Greenhouse Gases.

And while estimating the full range of climate damages is a daunting task, new research indicates economists are getting much better at it. Recent empirical studies have started to expand and strengthen the quantification of climate damages based on improved statistical techniques. A recent study in Nature, for example, finds that a lack of climate policy would reduce average income by 23% by 2100. These empirical estimates indicate that the true social cost of carbon is a multiple of the estimates based on the integrated climate-economy models that the Interagency Working Group still relies on. Which is what leading researchers suspected all along.

But what about the cost of climate policy? For many, the potential cost of enacting ambitious climate policy has become a powerful argument against taking any sort of action. So how can we tell if enacting climate policy is cost-effective? A first pass is to subject individual climate policy proposals to benefit-cost analyses that weigh the cost of the specific policy against the avoided climate damages using the social cost of carbon. For example, if the climate mitigation component of a renewable energy proposal costs less than the social cost of carbon, then the policy is good economics.

On the flip side, failing to pass a benefit-cost test does not necessarily imply that a policy is not cost-effective. The social cost of carbon still only captures some of the damages, and future revisions will in all likelihood correct it upwards. Additionally, a policy might lead to important co-benefits beyond climate policy such as reductions in criteria pollutants that have negative effects on human health and the environment.

The Clean Power Plan can serve as a good example to illustrate the argument.  Using benefit-cost analysis based on the social cost of carbon, the EPA determined that the Clean Power Plan is a worthwhile investment, with net gains totaling billions of dollars. This is the case even when ignoring any non-climate co-benefits, and when using the lower consensus estimate for the social cost of carbon. Relying instead on the newly available climate impact estimates adds several billion dollars to the net benefits.

Climate policy can go hand in hand with economic prosperity

Moreover, the evidence suggests that – contrary to what some claim – we can implement climate policy while growing the economy. While there can be small adjustment costs, climate policy also leads to lead to new opportunities and innovation. Patenting in clean technologies, for instance, is as vibrant as in biotech, translating into additional growth benefits for the economy as a whole.

Uncertainty makes acting now even more compelling

While there is uncertainty as to just how much CO2 levels in the atmosphere will rise, we know it will be more than ever before encountered by modern humans. And, we already know the economic impacts will be bad. The devastation from hurricanes Harvey, Irma and Maria—made worse by the impacts of a warming climate—will cost communities, taxpayers and insurance companies billions.

But things could turn out much worse. Theoretically, catastrophic climate damages could be so high as to dominate any benefit-cost analysis. This as of yet unpriced uncertainty is a compelling reason to act, not to wait. How to quantify uncertainty with precision is still at the frontier of climate economics. A recent working paper at the NBER calibrates a climate-economy model to financial risk attitudes. The authors find that taking the uncertainty in climate impacts seriously will increase the social cost of carbon even more.

Uncertainty taken seriously means ambitious climate policy today. At least that’s what unites groups on both ends of the political spectrum, from progressive environmentalists to Nobel-prize winning Chicago economists.

 The economic case for ambitious climate action is clear. With the right policies, the benefits of avoiding climate change far outweigh the costs. And in the absence of a price on carbon, the only question is: what are the right climate policy instruments? As EDF has long argued, political debates in climate policy must not be over the if, but the how.

Posted in Clean Power Plan, Economics, International, Politics, Social Cost of Carbon / Leave a comment