EDF Health

Selected tag(s): West Virginia chemical spill

Is this the mystery chemical in the WV spill?

Richard Denison, Ph.D., is a Senior Scientist.

[PLEASE SEE UPDATE TO THE INFORMATION BELOW IN MY MORE RECENT BLOG POST.]

I blogged last night that the Charleston Gazette had reported that a “new” chemical that was revealed to have been present in the tank in Charleston, WV, that began leaking into the Elk River on January 9 and contaminated the drinking water supply for 300,000 residents.

Two alert readers recognized the acronym “PPH” and the description of the chemical in Freedom Industries’ Material Safety Data Sheet (MSDS) for “PPH, stripped”, to which I had linked, and suggested the identity of the chemical might be a grade or form of propylene glycol phenyl ether (CAS no. 770-35-4).

I’ve not been able to find further references to or information on “PPH, stripped,” but with the help of those alert readers I have found information on what appears to be a similar but not identical product made by The Dow Chemical Company, under the trade name “DOWANOLTM PPh Glycol Ether” – see Dow’s Technical Data Sheet and its Product Safety Assessment.  Among the names Dow lists for its product are both “propylene glycol phenyl ether” and “PPh.” 

I’ve compared information available on the Dow and Freedom Industries products.  Physical-chemical properties are similar but not identical for the two materials.  For example, the boiling point for “PPH, stripped” is 247°C, and for DOWANOLTM it’s 241°C.  (This is consistent with the process of “stripping,” by which more volatile components of a mixture are distilled out, which would raise the boiling point of the remaining more concentrated higher molecular weight components of the mixture.)  The liquid densities of the two products also match:  1.06 grams per cubic centimeter.

Both products are indicated as being eye and skin irritants, but of low acute oral toxicity.

I contacted Dow this morning, and asked if the Freedom Industries’ “PPH, stripped” material was supplied by Dow or is the same material.  My Dow contact answered no to each question.  There are quite a few suppliers of this chemical globally.

[PLEASE SEE UPDATE TO THE ABOVE INFORMATION IN MY MORE RECENT BLOG POST.]

It thus appears likely that the “new” chemical in the West Virginia spill is a form of propylene glycol phenyl ether.  But questions remain as to who made the “stripped” version, who supplied it to Freedom Industries, why its specific chemical identity is being claimed proprietary, and what information beyond that in the company’s MSDS is available regarding its hazard properties.

 

Posted in Environment, Health policy, Regulation / Also tagged , , | Comments are closed

Yet another chemical identified as present in West Virginia chemical spill

Richard Denison, Ph.D., is a Senior Scientist.

Just when you thought this story couldn’t get any weirder or worse, it has just been revealed that another chemical substance was present alongside the crude MCHM mixture that leaked into the Elk River and contaminated the drinking water of 300,000 West Virginia residents.

A story published late today in the Charleston Gazette by Ken Ward, Jr., reports that the U.S. Environmental Protection Agency (EPA) has told officials that a chemical identified as “PPH, stripped” was present in the leaking tank at a level of 5.6%.  A Material Safety Data Sheet (MSDS) for the substance, provided by the Gazette, describes the substance as consisting of 100% “polyglycol ethers” – but withholds the substance’s specific chemical identity as “proprietary.”

And while the scant toxicity data provided on the substance in the MSDS suggest it has lower acute oral toxicity than the crude MCHM mixture – at least for what is called the “majority component” (suggesting that this substance, too, is a mixture) – the MSDS notes that “PPH, stripped” is a “serious eye irritant” and a skin irritant.

It has already been reported by the Charleston Gazette that some residents making hospital visits did so because of rashes or other skin irritation; other reports indicate eye irritation among residents as well.  It should be noted that the MSDS for crude MCHM reports that it is also a skin and eye irritant.

Some quick searches I’ve done tonight for “PPH” and “PPH, stripped” – including one using ChemIDPlus, a large chemical database maintained by the National Library of Medicine, have not yielded further information.

All this means yet more questions and more uncertainty for West Virginia residents.  A few:

– How did EPA learn of the presence of this new chemical in the spilled material?  So far, EPA’s not talking.

– Why did it take 12 days for this information to come out?  And then, not from the company, Freedom Industries, that owns and operates the leaking tank?

– Has this chemical been monitored for in the river and drinking water samples?  (Presumably not, since its presence was just revealed.)

– Who makes PPH, and will they now reveal its identity given the massive human exposure that has occurred?

– Or will EPA exercise its rarely used authority under the Toxic Substances Control Act (TSCA) to compel disclosure of the identity of PPH?  Section 14(a)(3) of TSCA provides that confidential business information “shall be disclosed if the [EPA] Administrator determines it necessary to protect health or the environment against an unreasonable risk of injury to health or the environment.”

Surely, this is such a case.

 

Posted in Environment, Health policy, Regulation / Also tagged , , | Read 2 Responses

CDC finally describes its derivation of “safe” level in WV spill – but erroneously claims it to be “highly conservative”

Richard Denison, Ph.D., is a Senior Scientist.  Jennifer McPartland, Ph.D., is a Health Scientist.

Slowly but surely, like the movement downstream of the spill’s plume, we are learning more about how government officials derived the 1 ppm “safe” level in the drinking water for the chemical MCHM that was spilled into West Virginia’s Elk River late last week.

A few more slivers of light were cast today onto what has been a remarkably opaque procedure used by CDC and other officials to set the 1 ppm level, which got even more confused with last night’s issuance of a “Water Advisory for Pregnant Women” by the West Virginia State Department of Health. 

The slivers come from a story today in the Charleston Gazette by Ken Ward, Jr. and David Gutman reporting on their conversation with an official from the Centers for Disease Control (CDC), and a media call today with the same official. 

CDC finally gave a fuller description of their methodology, and while it appears to have more closely followed standard practice than the methodology they initially described, many questions remain about the study used as the starting point.  Release of these studies, therefore, is essential.  [UPDATE:  EVENING OF 1/16/14:  Late today, Eastman finally made its studies public:  they are available here.] 

We discuss the details further below.  But first:

CDC’s erroneous claim that its “safe” level is “highly conservative”

CDC’s claim that the 1 ppm level is “highly conservative” is not warranted on scientific grounds.  This claim is based on its use of three 10-fold adjustments, referred to by CDC as “uncertainty factors,” to extrapolate from a dose identified in an animal study to a level in drinking water consumed by people.

  1. An “interspecies extrapolation” uncertainty factor to account for the fact that humans may be much more sensitive to the effects of a chemical exposure than rats.
  2. An “intraspecies extrapolation” uncertainty factor to account for the fact that humans differ in their sensitivity to a chemical exposure (e.g., infants or the elderly vs. healthy adults).
  3. A third uncertainty factor to account for how few data are available on the chemical and hence the likelihood that its health effects that have not been identified may occur at doses much lower than the doses for the health effect that has been studied.

The CDC official referred to these adjustments as “safety factors” – implying they provide for a large margin of safety.  This is FALSE.  These are REALITY FACTORS.

Each of these accounts for known circumstances with regard to the effects of chemical exposures on people in the real world.  There are plenty of examples of chemicals where:

  1. humans are 10x (or more) more sensitive than rats to a chemical effect, and
  2. the most vulnerable/sensitive human is 10x (or more) more sensitive than the least vulnerable/sensitive, and
  3. an effect not considered in a given study occurs at a dose that is 10x (or more) lower than the effect looked at in the study.

Don’t take our word for it, but rather the National Academy of Sciences, in a seminal 2009 report titled Science and Decisions:  Advancing Risk Assessment (p. 132, emphases in original):

Another problem … is that the term uncertainty factors is applied to the adjustments made to calculate the RfD [reference dose, derived from, e.g., a no-effect level] to address species differences, human variability, data gaps, study duration, and other issues. The term engenders misunderstanding: groups unfamiliar with the underlying logic and science of RfD derivation can take it to mean that the factors are simply added on for safety or because of a lack of knowledge or confidence in the process. That may lead some to think that the true behavior of the phenomenon being described may be best reflected in the unadjusted value and that these factors create an RfD that is highly conservative. But the factors are used to adjust for differences in individual human sensitivities, for humans’ generally greater sensitivity than test animals’ on a milligrams-per-kilogram basis, for the fact that chemicals typically induce harm at lower doses with longer exposures, and so on. At times, the factors have been termed safety factors, which is especially problematic given that they cover variability and uncertainty and are not meant as a guarantee of safety.

CDC’s Methodology Revealed

Until yesterday, all indications were that the 1 ppm level was derived from a single oral lethality study in rats that is not publicly available but reported a median lethal dose value (LD50).  Yesterday, CDC referred to “additional animal studies” that were under review.  In today’s Charleston Gazette story and this afternoon’s call, the CDC official indicated for the first time that CDC used a second study – also not publicly available – as the starting point for the calculations.  This second study was stated as identifying a “No Observable Adverse Effects Level (NOAEL)” for MCHM of 100 milligrams per kilogram of body weight per day (mg/kg/day). 

[UPDATE 1/17/14:  This study, finally made available late yesterday, was performed using “pure MCHM” (97.3%) rather than the “crude MCHM” mixture that was the material actually spilled.  This adds some additional uncertainty; if other components besides MCHM present in the crude mixture are more or less toxic than MCHM, the mixture’s toxicity would differ from that found for the pure material.]

Numerous questions about this study remain unanswered that bear on its relevance for the purpose to which it has been put.  Just a couple key ones:

  • What health effect(s) were looked for?  and which ones were not considered?  [UPDATE 1/17/14It appears that the study looked for changes in standard blood chemistry and biochemistry parameters, and included histopathological examination of all major organs to look for abnormalities.] 
  • How long were the animals exposed – a day? a week?  a month?  [UPDATE 1/17/14:  The study report indicates the animals were exposed for 4 weeks.] 

But at least we now know how CDC made the calculation that led to the 1 ppm level:

  1. CDC started with the reported NOAEL of 100 mg/kg/day, and divided it by the three uncertainty factors (10 x 10 x10 = 1000) to arrive at a “reference dose” of 0.1 mg/kg of body weight/day.  This is the amount of the chemical that, under the assumptions made, could be presumed “safe” to ingest.
  2. It then assumed an “average child” weighing 10 kilograms (about 22 pounds) was drinking water at an average rate of 1 liter per day (about 34 ounces).  These average values are typical assumptions for use in risk assessment.
  3. Then CDC multiplied the 0.1 mg/kg of body weight/day by the 10 kg average body weight, resulting in 1.0 mg/day for a child as the amount that could be ingested without seeing an effect, again under the assumptions used.
  4. That 1.0 mg/day was then divided by the average water consumption of 1 liter/day to yield 1.0 mg/liter as the concentration in the water consumed identified by CDC as the “safe” level.
  5. That 1.0 mg/liter is equivalent to 1 ppm.

Welcome to the wild and woolly world of risk assessment, folks.  More to come, we’re sure.

Posted in Environment, Health policy, Regulation / Also tagged | Read 2 Responses

West Virginia issues drinking water advisory for pregnant women in wake of chemical spill

Richard Denison, Ph.D., is a Senior Scientist.

Shortly after 8pm this evening, the West Virginia Department of Health issued a “Water Advisory for Pregnant Women” in connection with last Thursday’s chemical spill.  The news was first reported by Ken Ward, Jr. and David Gutman in the Charleston Gazette.

The Advisory states:

The West Virginia Bureau for Public Health advises, after consultation with the U.S. Centers for Disease Control and Prevention (CDC) this evening, that the CDC recommends—out of an abundance of caution—that pregnant women drink bottled water until there are no longer detectable levels of MCHM in the water distribution system. However, the CDC re-affirmed previous advice that it does not anticipate any adverse health effects from levels less than 1 ppm.

Guidance from the CDC is attached.

Two other documents are available:

It is unclear what prompted tonight’s issuance of the Advisory, which comes six days into the spill.  However, one clue may be in the CDC letter, which states:

Since making the initial calculations, scientists have obtained additional animal studies about MCHM.  These are currently being reviewed.  At this time, the scientists continue to recommend 1 ppm as a protective level to prevent adverse health effects.  However, due to limited availability of data, and out of an abundance of caution, you may wish to consider an alternative drinking water source for pregnant women until the chemical is at non-detectable levels in the water distribution system. (emphasis added)

It appears the new information prompted the CDC recommendation that West Virginia consider advising pregnant women to avoid drinking the water, which raises the question as to whether the new animal studies suggest a potential for developmental toxicity or a related effect.

It should be noted that the answer to the first question in the FAQ document states: “There are no known studies showing harm to the fetus as a result of consuming water with MCHM levels below 1 ppm.”

Clearly something prompted the issuance of the advisory.  I hope we’ll learn more shortly.

Questions have already been raised on this blog about the lack of data on this chemical and the methodology used by government officials to calculate the 1 ppm level.  This new development, however, I believe lends even greater weight to the need for immediate public release of both all available studies and the methodology.

 

Posted in Environment, Health policy, Regulation / Also tagged | Read 1 Response

West Virginia officials trust shaky science in rush to restore water service: One-part-per-million “safe” threshold has questionable basis

Richard Denison, Ph.D., is a Senior Scientist.

[SEE NOTE ADDED 1/15/14 BELOW]

In a press conference today outlining plans to restart the water system serving 300,000 people, West Virginia state officials and executives from the West Virginia American Water utility company stressed that levels of the toxic chemical that contaminated the supply after last week’s spill had reached a “safe” level of one part per million (1 ppm), the threshold agreed upon by state and federal officials on Saturday.

Unfortunately, the science behind this standard remains unclear.  Based on what we do know, there are good reasons to believe that officials are overlooking significant health risks.  Read More »

Posted in Environment, Health policy, Regulation / Also tagged , , , | Read 36 Responses

Failed TSCA collides with the real world in West Virginia chemical spill this week

Richard Denison, Ph.D., is a Senior Scientist.  Jennifer McPartland, Ph.D., is a Health Scientist.

[CORRECTION ADDED BELOW 1/12/14]

If the protracted debate over reform of the Toxic Substances Control Act (TSCA) sometimes seems esoteric or abstract, the epic failure of this law could not be better illustrated than by what’s unfolding in Charleston, WV this week.

There, a major spill into the Elk River of an obscure chemical used to wash coal has disrupted the lives of hundreds of thousands of residents of the state for what is likely to be days if not weeks or longer.  The storage tank from which the chemical has leaked lies upstream from the intake for one of the city’s drinking water treatment plants.  Even before the leak had been detected or reported, the chemical was sucked into the plant and distributed through thousands of miles of pipe to homes and businesses.  Residents have been told not to drink, bathe or otherwise come into contact with the water – although some exposure clearly did occur before the warnings were issued.  Massive amounts of water are being trucked into the area.  President Obama declared the situation a national emergency.

What is particularly maddening and outrageous is that no one – not local or state officials, not the company that owns the storage tank, not the federal government – can say anything even close to definitive about what risk the chemical poses to people, even in the short-term, let alone over time.  And that’s where the failures of TSCA come into sharp focus.  Read More »

Posted in Health policy, Regulation, TSCA reform / Also tagged , , | Read 10 Responses