Global Clean Air

Air Pollution Research Reveals Exposure Disparities in Bay Area

After working with EDF and partners to map hyperlocal pollution in Oakland, CA using Google Street View vehicles, researchers Dr. Joshua Apte (University of California, Berkeley) and Dr. Sarah Chambliss (University of Texas at Austin) collected additional mobile data across the San Francisco Bay Area to expand understanding of street-level air quality and disparities in pollution exposure. Their new paper, Local- and regional-scale racial and ethnic disparities in air pollution determined by long-term mobile monitoring” was published in September in the Proceedings of the National Academies of Sciences. It builds on previous work in Oakland published by Dr. Apte in 2017. I recently spoke with Dr. Chambliss about the latest findings.

What were the key findings of this new research?

Dr. Chambliss: In this study, we broadened the geographic scope of our mobile pollution measurements beyond Oakland to neighborhoods across the Bay Area. Throughout the other areas we drove across the SF Bay Area, we saw some of the same types of patterns that we originally described in the original Oakland study: steep increases in concentrations near major roads (especially for nitric oxide, or NO) and some additional localized peaks that could be attributable to other localized sources that we are still working to identify.

We also saw evidence that the types of sources contributing to local pollution differ among study areas: some areas have more prominent peaks for black carbon, others for NO. The mix of pollution is different in different areas around the Bay. We saw that some neighborhoods were much cleaner than others, and some neighborhoods had higher levels of some pollutants but were not higher for every pollutant. Because we had looked at so many different types of neighborhoods, we saw an opportunity to extend the Oakland analysis by also asking: Who lives in the neighborhoods that are more polluted, and how do pollution patterns compare to or interact with patterns of racial/ethnic segregation that persist in the Bay Area?

After connecting the street-level air pollution data with census data, we found that there were systematic differences in pollution exposure across racial/ethnic groups. Specifically, Black and Hispanic/Latino people had 10-30% higher average exposure to NO, nitrogen dioxide (NO2) and ultrafine particles (UFP) than the population as a whole, while white non-Hispanic residents had 20-30% lower average exposure. The neighborhoods where we measured the cleanest air tended to have higher proportions of white residents, as well. In contrast, neighborhoods where more people of color lived tended to have higher concentrations not just near roadways but in areas of the neighborhood we would consider “background” locations: residential areas where we expect conditions to be cleaner.

Why do these disparities in air pollution exposure matter?

Dr. Chambliss: Air pollution can have major short-term and long-term health impacts. Studies have shown linkages among the group of pollutants we looked at–NO and nitrogen dioxide (NO2), black carbon, and ultrafine particles- with hospital visits, chronic lung and heart disease, with particular risks for the health of newborns and the elderly.

Because air pollution causes systemic inflammation, its impacts spread far beyond the lungs: there is evidence of air pollution affecting cognitive development and diabetes prevalence, for example. Those exposed to higher air pollution are at higher risk of a wide range of health problems. When disparities fall along lines of socioeconomic status or other social vulnerabilities, the health risks caused by air pollution can compound with issues like lower access to medical care or less capacity to handle the financial burden of health issues.

How did you collect such detailed street-level pollution data?

Dr. Chambliss: We had several partnerships that allowed us to achieve this level of coverage. A partnership with Google Earth Outreach allowed us to use Google Street View vehicles to drive “blackout” patterns, where we drove down every road in a study area each time we visited. We also partnered with Aclima, Inc., who installed laboratory-grade instrumentation in these cars and kept the equipment maintained and calibrated for near-daily driving.

We drove two of these “mobile laboratories” nearly every weekday over a 32-month period, visiting different neighborhoods each day and revisiting each neighborhood every 6 weeks or so to collect measurements representing different seasonal conditions.

What kind of policy implications do you see for this work?

Dr. Chambliss: That there are higher pollution levels in neighborhoods with more people of color isn’t a new finding in and of itself, but the level of spatial detail that we could bring to this analysis provided some additional insights. Often, within one neighborhood or several adjoining neighborhoods, there is a wide range in the outdoor pollution levels at different addresses. And these differences do not typically lie along racial/ethnic lines. It’s only when you zoom out to look at city-wide patterns of segregation that you see racial/ethnic disparity in exposures. This is strongly influenced by neighborhoods where the lowest levels of pollutants like NO2 and UFP are higher than even peak levels in cleaner neighborhoods.

This gives us an indication of how policies could be improved to geographically target pollution mitigations to better address disparity and promote environmental justice. Look specifically at communities where the baseline pollution levels are higher and where residents are predominantly people of color. This segregation is often connected with historically racist policies such as discriminatory lending policies or racial covenants built into housing deeds. While those policies may have ended, they leave a persistent legacy placing communities of people of color in areas with higher pollution and greater environmental health risks. To help reverse these patterns of environmental injustice, it’s critical to work to clean up the air pollution sources within those neighborhoods.

What does work like this mean for the future of hyperlocal air pollution monitoring?

Dr. Chambliss: An implication of how localized some pollutant peaks are – a phenomenon that mobile monitoring is particularly suited to measure – is that when you cut emissions from a particular source or type of source, you will see major benefits very close to that source but more moderate reductions everywhere else. If you want to evaluate the full benefits of such a policy, making measurements with fuller spatial coverage may show a magnitude of improvement that wouldn’t be reflected at a single fixed monitoring site. For example, anti-idling policies would help specifically at locations with a lot of truck activity, like ports or warehouses, but it may not be obvious from the outset where the most idling occurs. Mobile monitoring is a way to find those areas that really benefit.

Another thing this research shows is how important it is to spread out measurements over a broader geography as much as possible, given time and resource constraints. It would be great to do a similar study in another US city, because each one has a unique history of growth, industrialization and zoning, and segregation or discriminatory housing policies. It would also be interesting to look at cities outside of the US where urban development patterns, both demographic and land-use related, are much different.

What’s next for you in this field?

Dr. Chambliss: We are continuing to work with these mobile monitoring data to gather further insight into what features of the urban environment lead to pollution hot spots.

 

 

Also posted in Academic, Health, Oakland / Comments are closed

How the Build Back Better Act will help clear the air

With the Build Back Better Act, Congress has the opportunity to make an unprecedented investment in public health and the climate, particularly in the reduction of harmful air pollution, which disproportionately harms low-income residents and communities of color. 

While many cities across the country have experienced an overall improvement in air quality, residents in neighborhoods from West Oakland, California to the 5th Ward in Houston must still fight for cleaner air, as heavy truck traffic and industrial pollution continue to seriously impact their health. 

woman on ladder installing small air pollution monitor on telephone poll

Hyperlocal air quality monitors have demonstrated how air quality levels can vary street by street.

Air pollution is not evenly distributed across the places that people live, work, play and worship.  A critical step in better understanding and taking action to reduce these inequities in air pollution impacts is to fill in the many gaps in our national air quality monitoring network. 

Historic investments in air quality monitoring 

This bill would help eliminate air pollution blindspots by providing at least $170 million for direct air quality monitoring, a near doubling of federal investment in such monitoring, which has dropped by 20% in real terms over the past 16 years.

It also allocates $50 million to monitor and reduce air pollution in schools that serve students from low-income communities.

This funding has the opportunity to make a tremendous impact on the health and wellbeing of children, as 1 in 5 of all new childhood asthma cases in the United States are attributable to traffic related air pollution. Asthma is a leading cause of school absenteeism, accounting for about 14 million absences each school year, or one-third of all school days missed

Data-focused investing

The Build Back Better Act also recognizes that historically we have been investing in activities that cause or mitigate pollution with our eyes closed. The bill invites, and in some cases requires, insights about local pollution in order to apply for billions in grant funding available to mitigate pollution.  

Specifically, the bill provides $5 Billion in planning and implementation for pollution reduction, and requires applications to include ‘‘(A) the degree to which greenhouse gas air pollution is projected to be reduced [in] low-income and disadvantaged communities.” Communities would be required to demonstrate how they will verify that pollution is decreasing after receiving the grants. 

It also offers $4 Billion to mitigate or remediate the negative impacts of transportation, starting by monitoring or assessments of local and ambient air quality, transportation emissions, and hot spots of extreme heat or elevated air pollution.

These funds could be especially helpful in communities that bear the greatest cumulative burdens of pollution–those adjacent or downwind of major industries, plagued by heavy truck traffic and/or surrounded by highways–the consequence of systemic racism.  

To address this, the bill includes $3 Billion in Environmental And Climate Justice Block Grants, which could include monitoring and mitigation of air pollution, and facilitate engagement of disadvantaged communities in state and federal public processes.

Opportunities to harness new technology

This bill comes at a time when technology and analytics like satellites and low-cost air pollution monitors are making it simpler to track pollution and its impacts. These insights will be critical to the accountability required by the grants and can help transform our understanding of where air pollution comes from, what it does to local health, and who is responsible. 

With this historic funding, we can put the new, innovative methods to use at far greater scale, fueling a better understanding of how air pollution impacts health at the neighborhood level. With richer, more reliable data in hand, policymakers can focus mitigation efforts on areas with the highest burden and turn to solutions that have the potential for the greatest impact, especially for those who are most at risk.

Also posted in Government Official/Policymaker, Health, Monitoring / Comments are closed

Digging into Freight Pollution Data in London

Road transportation is a major source of air pollution in London, with heavy goods vehicles one of the top contributors of pollutants that harm people’s health.

The thinktank, Centre for London, has been conducting research this year to look “at how we can create smarter, fairer and more sustainable freight and logistics ecosystems.”

Centre for London was keen to understand more about freight activity in London, like daily activity patterns and how it was affected by COVID-19 lockdowns in the last year. These questions aren’t easy to answer with publicly available data sources. Using supportive traffic and congestion datasets, we were able to produce an analysis that provides a closer look at freight across the capital city – and a special focus on a particular neighbourhood in South London to get a more granular picture.

Here’s what we found. Read More »

Also posted in Health / Comments are closed

How integrated transport solutions can maximize health and climate benefits

We are facing an epic twin challenge: climate change and the air pollution crisis.

One way we can confront this challenge is by approaching transport solutions with both a climate and clean air lens – simultaneously targeting multiple pollutants that warm the planet and harm our health.

Transport, health and climate

Transport is one of the main sources of air pollution around the world, with direct effects on mortality as well as on respiratory and cardiovascular disease. These effects disproportionately impact vulnerable populations like children, the elderly and those with preexisting conditions. For example, a recent health impact assessment by Environmental Defense Fund estimated more than 2,500 lives are lost and 5,200 children develop asthma every year in the San Francisco Bay Area due to exposure to traffic-related pollution.

Transport-related sources of air pollution that damage our health are also sources of climate pollution. The extraction, transport and refining of hydrocarbons and the burning of gasoline, diesel or any other fuel to power our vehicles emits a cocktail of substances that harm both people and environmental health, as well as a mixture of greenhouse gases that heat the Earth.

With overlapping sources of pollution, the transportation sector presents a huge opportunity to achieve both climate and air pollution goals simultaneously.

The dangers of looking at climate without a clean air lens

Often climate and air quality goals are treated separately within a city or region, creating an artificial division and disconnected solutions. A city might have a climate plan and a distinct air pollution plan, run by different teams, which can inadvertently lead to harmful health outcomes.

For example, in the 1990s and 2000s in the European Union, climate policy encouraged drivers to switch to diesel vehicles. That policy was focused on reducing carbon pollution – without accounting for the significant amount of nitrogen dioxide (NO2) pollution that diesel engines put into the air. According to the American Lung Association, NO2 is associated with increased inflammation of the airways that can cause:

  • Worsened cough and wheezing;
  • Reduced lung function;
  • Increased asthma attacks; and
  • Greater likelihood of emergency department and hospital admissions.

The pro-diesel policy led to a huge uptick in diesel-fueled cars on European roads, kicking off a new wave of air pollution that cities across the continent are still grappling with today. In London, for example, our research revealed how diesel pollution remains a huge source of the city’s air pollution, with diesel cars serving as the largest single source contributor to nitrogen oxides (NOx) pollution at London primary schools. NOx is a group of gases that includes NO2.

The benefits of an integrated approach

Fortunately, city leaders are beginning to address climate and air pollution goals simultaneously. For example, Medellin, Colombia launched an Integrated Air Quality Management Plan that addresses both climate pollutants and health-damaging air pollutants. The plan includes the implementation of a Low Emission Zone focused on reducing fine particulate matter pollution and the incorporation of 64 zero-emission buses to the city’s Bus Rapid Transit system.

Sustainable transport is not just about clean vehicles. The ‘Avoid-Shift-Improve framework’ from the SLOCAT Partnership is useful:

  • Avoid trips in motorized vehicles and diminish distances travelled by both passenger and goods, through policies such as home office and other travel demand management measures, transit-oriented development, and logistics optimization.
  • Shift travel to sustainable mobility modes, by prioritizing investments on walking, cycling and public transport infrastructure, complemented by promotion strategies to ensure their preference by passengers, as well as to prioritize the use of efficient freight alternatives such as railways.
  • Improve the environmental performance of transport modes through energy efficiency, and ultra-low and zero emission technology and fuel systems.

Integrated climate and clean air solutions means more livable cities where people can breathe clean air, safely walk and cycle and access better and affordable public transport. It means optimized freight logistics, options to reduce commuting whenever possible and technologies and measures to reduce air pollution and carbon emissions. Integrated solutions mean using less-polluting vehicles and creating connected cities in which people can enjoy family and friends, go to school, work and have fun – all within a short distance.

We can tackle our twin challenge of climate and air pollution, with transport playing a key role in reducing emissions, protecting people’s health and achieving multiple other benefits for our lives and the planet.

Also posted in Climate, Government Official/Policymaker, Health / Comments are closed

Better data is critical to address health disparities in air pollution’s impacts

Ananya Roy, Senior Health Scientist, and Maria Harris, Environmental Epidemiologist 

The last several months have seen a wave of momentum in policies seeking toward advance environmental justice and equity through better data collection and mapping. In his first week in office, President Biden signed an executive order to initiate the development of a screening and mapping tool to identify disadvantaged communities with the goal of informing equitable decision making. And legislation introduced in the House of Representatives and Senate would launch a similar effort. This focus on data and mapping is critical.  

Read More »

Also posted in Environmental Justice, Government Official/Policymaker, Health, Oakland, Partners, Public Health/Environmental Official, Science / Comments are closed

Vital global initiative will accelerate clean air solutions in cities

Everybody deserves the right to breathe clean air. Yet air pollution is choking cities and communities around the world – a staggering 9 in 10 people breathe unhealthy air. 

City leaders need to urgently identify and accelerate solutions across the world. That’s why the U.S. Agency for International Development (USAID) is launching a bold initiative – called Clean Air Catalyst – to help cities around the world reduce air pollution by advancing solutions that protect health, promote equitable prosperity and tackle the climate crisis.  Through a global consortium of organizations led by the World Resources Institute (WRI) and Environmental Defense Fund (EDF), Clean Air Catalyst will begin in two pilot cities: Indore, India, and Jakarta, Indonesia. In Jakarta, WRI Indonesia is the implementing organization.

To mark the initiative’s official launch, hundreds of people from around the world attended a virtual conversation on clean air, health and climate solutions with U.S. Senator Bob Menendez and USAID’s Karl Fickenscher, as well as representatives from partners and the pilot cities. Here’s what you need to know. 

Read More »

Also posted in Climate, Concerned Citizen, Energy, Environmental Justice, Government Official/Policymaker, Health, Partners / Comments are closed

Deprived and BAME schoolchildren in London experience greater air pollution burden

By: Greg Slater, data analyst

Air pollution varies dramatically across London, which means not all schoolchildren have the same start in life.

Using a powerful new dataset, we found that pollution is significantly higher at primary schools with more students from deprived areas, as well as at schools with a higher proportion of students of Black, Asian and Minority Ethnic (BAME) background. With vehicles a major contributor, pollution is also unsurprisingly elevated closest to the cities’ main roads.

Damaging health

Nitrogen oxides (NOx) pollution is a toxic chemical cocktail that includes nitrogen dioxide (NO2). Road transport – especially diesel vehicles – is a major source of NOx, which can inflame airways and aggravate existing heart and lung conditions.

In fact, recent research shows living near busy roads in London, where NOx pollution is high, may stunt lung growth in children by 12.5%.

Stark inequity

New modelled data produced by Cambridge Environmental Research Consultants as part of the the Breathe London pilot project has allowed us to look at the estimated level of NOx pollution at every London state primary school in 2019.

Our analysis reveals that air pollution does not affect all schoolchildren equally, with children from deprived neighbourhoods exposed to more pollution. When examining the deprivation level (a measure that incorporates a broad range of living conditions, including income, health and access to resources), we found that average NOx levels at schools with pupils attending from the most deprived areas were 27% higher than those at schools with pupils attending from the least deprived areas.

We also found that white students are exposed to less pollution at school. Using the modelled pollution data and census data to estimate the proportion of students of BAME background at each school, the results show that schools with the highest percentage of non-white pupils have average NOx levels that are 28% higher than schools with the lowest proportion of BAME students.

 

Pollution from road transport

By looking at the rise and fall of schools’ NOx levels over the course of a day, we see that pollution peaks around 7-9 am. The chart below also depicts how much is coming from distinct sources, revealing that about 50% of the pollution comes from vehicles during these morning hours. This is when children are typically traveling to school and more likely to be exposed to pollution.

 

We also found that pollution is on average 25% higher at schools within 100 metres of London’s ‘Red Routes’ – with the bulk of local pollution again coming from road transport. Red Routes are the city’s major roads, managed by Transport for London on behalf of the Mayor of London.

 

The number of children studying near these roads varies significantly across London. For example, 20% of primary schools in Wandsworth are near a Red Route compared to 8% for an average London borough.

It’s clear that not all children currently have an equal chance at a healthy future – with deprived and BAME children breathing in significantly more pollution at their primary school. Measures that cut pollution from vehicles and reduce exposure, especially along the Red Routes, are essential to address this inequity and protect young lungs.

Cambridge Environmental Research Consultants produced the NOx pollution dataset as part of the Breathe London pilot project.

EDF Europe provided a data analysis on air pollution at London primary schools to the London Assembly for its February 2021 report.

Also posted in Health / Comments are closed