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Executive Summary 

According to the New Jersey Department of Environmental Protection, medium- and heavy-duty 

(MHDV) trucks and buses account for 4% of vehicles on the road but cause nearly 25% of 

transportation greenhouse gas emissions. In addition, fleet emissions are a particular problem 

for overburdened communities. Many of these communities are located near freight corridors, 

ports and distribution centers and are disproportionately exposed to harmful pollutant levels. 

The good news is that New Jersey policymakers are making clear steps to transition the MHDV 

sector to zero emissions. New Jersey’s 2019 Energy Master Plan calls for electrification of the 

state’s transit fleet; industry partnerships to develop electrification incentives; and expansion of 

clean transportation options in low- and moderate-income communities that are 

disproportionately impacted by diesel pollution. Furthermore, New Jersey also signed on to a 

multi-state agreement committing to transition trucks and buses in the state entirely to zero-

emission vehicles, starting with 30% of vehicle sales by 2030, and became the first state on the 

East Coast to adopt the Advanced Clean Trucks (ACT) rule—which requires an increasing 

number of zero-emission truck sales each year in the state. Commercial fleets of battery-electric 

MHDVs have increased, and medium- to large-scale vehicle purchases are beginning to occur 

in leading fleets. It’s clear the deployment of electric MHDVs is accelerating in New Jersey, in 

particular classes 3 through 7.    

  

One of the biggest challenges for trucks and buses to electrify is ensuring there is enough 

charge to meet their driving needs. These fleets can have tight operating schedules, cold 

weather, long driving ranges and heavy loads. Given these challenges, it has been unclear from 

a public and industry perspective whether and how fleets that depend on these vehicles will be 

able to meet charging and operational demands with existing electric vehicle technology. While 

many reports and studies have evaluated the market readiness of these trucks, many have 

relied on simulated and not actual fleet operational data which is needed to realistically quantify 

the needs, costs and operational conditions involving vehicle charging. 

  

Previous analysis was done by Gladstein, Neandross and Associates,1 which used real 

operational data from two class 8 fleets in California to assess the charging needs and 

associated costs. The current study stems from this work, using operational data from five real 

fleets of class 3 through 7 trucks, to evaluate the costs and capabilities of charging systems, 

and the impact of electric rate design on the ability of fleets to deploy electric vehicles in the 

medium- and heavy-duty market segment in New Jersey. In doing so, the analysis seeks to 

enhance the body of public knowledge on the needs and implications associated with charging 

systems and utility rates. Further, this study will evaluate the grid impacts of electrifying New 

Jersey’s entire class 3 through 7 trucks and the impact of employing technologies such as 

managed charging and onsite solar and battery storage to reduce grid buildout needs and costs.  

 

At the outset of the analysis, five key issue areas were assessed: 

 
1 http://blogs.edf.org/energyexchange/files/2021/03/EDF-GNA-Final-March-2021.pdf  

http://blogs.edf.org/energyexchange/files/2021/03/EDF-GNA-Final-March-2021.pdf
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1. Fleet needs: How effective will electrification be at meeting fleet operational needs 

without modification of routes and timetables? 

2. Cost effectiveness: What is the upfront capital cost of charging infrastructure seen by 

typical fleets electrifying in New Jersey? In the current market climate, will fleets see fuel 

cost savings for fleets that electrify? Is there a correlation between finding cost parity 

and the truck size of a fleet depot? 

3. Charging rates and managed charging: Under what charging scenarios can a target 

facility maximize the fraction of trips successfully charged while minimizing power 

demands and expected infrastructure costs? Also, how are the costs of charging and 

peak load impacted by managed charging under different electric rate variants? 

4. Onsite solar and battery: What role do depot solar photovoltaics (PV) and battery have 

on the charging infrastructure costs of each deployment? Also, how do solar PV and 

battery scenarios affect the aggregate facility load profile under various utility rates? 

5. New Jersey-wide grid impact: What is the aggregated peak load in New Jersey if all 

class 3 through 7 fleets electrify? How much does managed charging and onsite solar 

and battery reduce expected peak load and grid buildout costs? 

Five fleets types in New Jersey were selected, shown below in Table ES-1, with depot sizes 

based on average sizes for each market segment seen in New Jersey. Data on average daily 

energy use and average vehicle efficiency were based on actual vehicle fuel consumption 

(gasoline and/or diesel) and miles driven. 
  

Table ES-1: Summary of Fleet Scenarios for Study 

Vehicle use 

case 

Vehicle 

class 

Depot 

size 

Average 

energy 

use 

(kWh/day) 

Average 

efficiency 

(kWh/mi) 

Battery 

capacities 

(kWh) 

Max 

charging 

capacities 

(kW) 

Landscaping 3 2 82 1.04 140 20,50,100 

Food service 4 4 89 1.11 156 20,50,100 

Wired telecom 5 11 122 1.93 226 30,50,100 

Armored car 6 7 259 3.36 343 60,100,150 

Yard tractors 7 2 50 3.50 80, 160 20,50,100 

Various scenarios for each use case, which varied the charging station power, truck battery 

capacity, and number of charging sessions as all fleets, with exception of class 7 yard trucks, 

had long overnight charging windows with multiple breaks during daily driving schedules. With 

one daily charging session on average nearly 80% of trips were able to successfully be 

electrified; see Table ES-2. Noting that as the class 7 trucks data was based on an already 

electrified fleet the ability to meet fleets needs was not assessed or included in this result.  

Further, when increased to two and three charging sessions, all of which could be done with the 
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amount of non-driving time of each fleet, an average of 98% of the fleets’ trips could be 

successfully covered with an electric truck.  This means that with either enroute charging or by 

slightly modifying fleet operations to allow mid-shift charging, almost all trips could be met with 

existing battery electric technology. 

  
Table ES-2: Summary of Results of Successful Electric Trips per Vehicle Use Case 

Vehicle use 

case (class) 

Number of daily charging sessions 

1 2 3 

Landscaping 

(3) 84.53% 99.4% 99.9% 

Food service 

(4) 81.52% 97.1% 99.5% 

Wired telecom 

(5) 86.21% 99.0% 99.9% 

Armored car (6) 66.38% 88.8% 96.6% 

 

For each of the use cases defined charger and battery pack scenarios, the 20-year net present 

value of infrastructure and electricity costs under a transition to electric trucks were evaluated.  

When unmanaged, the upfront capital cost of charging infrastructure per vehicle ranged from 

between $90k and $125k. In Figure ES-1 below, it can be seen that the bulk of the upfront 

capital cost is a result of the make-ready costs and warranty costs. The study showed that 

approximately 30% of the upfront charging infrastructure costs were as a result of make-ready.  

This would suggest that policy and incentive support to reduce make-ready costs for fleets 

would have a significant impact on the total cost of infrastructure for fleets.   

  
Figure ES-1: Breakdown of capital costs for each use case using unmanaged charging. 



  9 

 

To mitigate these costs the impact of managing the charging of a depot, and thus reducing the 

number of charging stations and peak charging power was explored. It was found that by 

implementing managed charging, upfront capital costs were able to be reduced by $50k to $80k 

per vehicle. This alone would result in significant savings for a fleet and should be actively 

explored when developing electrification plans. 

Four existing electricity rates in New Jersey were used to evaluate the cost of charging for use 

of the fleet scenarios. Two were time-of-use (TOU) rates and the other two were hourly real time 

pricing (RTP) for the energy portion of the electricity bill. It was shown that average annual 

charge per vehicle ranging from $191k (PSEG RTP) to $29k (Atlantic City TOU), and the overall 

range in cost varying from 22% to 240% of capital costs. Further across the board the largest 

portion of the electricity bill was the demand charge (defined as the sum of capacity, generation, 

transmission, distribution, and delivery charges, where applicable, that scaled with power, e.g., 

$/kW) ranging from 50% to 95% of the bill. Rates design solutions should be explored to reduce 

electricity costs for commercial fleets. 

For all rates evaluated, managed charging by the fleets results in significant energy cost savings 

over unmanaged charging seeing annual savings per vehicle anywhere from $20k to over 
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$150k, shown in Figure ES-2. This was due largely to spreading the charging over the entire 

overnight charging window to reduce the peak power in an effort to demand charges.  However 

it should be noted that many fleets may not have capability to manage charging due to 

operational constraints and therefore rate design that explores demand charge mitigation as 

well as programs that educate and increase managed charging tactics will be important to meet 

New Jersey’s electrification targets. 

 
Figure ES-2: Total cost savings per vehicle of managed and unmanaged charging. 

 

The impact of onsite solar and battery on charging total cost of infrastructure was evaluated. 

The solar and battery capacities were sized to be able to accommodate 80% of the peak load 

for each depot scenario. It was found that when applying onsite solar + battery to the charging 

infrastructure, there is a significant savings in electricity cost seen, ranging from $20k to $208k 

(NPV/vehicle) when compared to unmanaged charging, or 75% to 93% savings. However, when 

compared to managed charging, the savings are still there but significantly reduced to $2k to 

$33k, or 19% to 63%. While there is electricity savings across the board, they do not take into 

account upfront costs required to install onsite solar and battery. As the fleets for these use 

cases often have significant dwell times overnight, they can already reduce a majority of their 

electricity costs with managed charging. To ensure rollout of onsite solar and battery at depots 

to maximize resiliency and further reduce grid buildout, other revenue opportunities and 
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programs for these resources to offer grid services should be explored to bring down the cost of 

ownership. 

A key finding was that when comparing the cost of charging with electricity with gasoline and/or 

diesel fueling, there is annual fuel cost savings of 38-78% for all vehicles use cases. It is 

important to emphasize that this was only the case when charging was managed to lower the 

peak load. For fleets to see fuel cost savings it is important for them to explore managed 

charging techniques or rates which mitigate demand charges. 

However, despite these fuel cost savings, when evaluating the total cost of infrastructure and 

electricity compared to traditional fueling there was only cost savings for the wired telecom 

(class 5) use case, which had the largest number of vehicles in the depot. 

Table ES-3: Fuel cost savings: Total cost of ownership (electricity and infrastructure) versus gasoline/diesel fuel cost, 
annual cost for depot. 

    Best (Managed, AC RTP) 

Vehicle use case 

Fuel cost 

($/yr) 

Total cost of 

ownership ($/yr) 

Savings relative to fuel 

costs ($/yr) 

Landscaping (Class 3) $5,385 $13,653 -$8,268 

Food service (Class 4) $15,959 $22,616 -$6,657 

Wired telecom (Class 5) $63,841 $54,408 $9,433 

Armored car (Class 6) $41,084 $45,009 -$3,924 

Yard tractors (Class 7) $3,440 $14,473 -$11,033 

  

A key influence on finding cost savings when including the cost of infrastructure was the size of 

the fleet using the depot. While the number of trucks for each use case was set to be the 

average for that market segment the study explored evaluating the impact of scaling trucks on 

the total cost of ownership.  It was found that cost parity was found for each use case when 



  12 

scaled to between 8 and 15 trucks. However, that  breakeven point would change depending on 

operating conditions of the fleet (shorter time windows, driver shift constraints, etc.). What is 

clear is that because smaller fleets are less likely to be economical to electrify, in early stages, 

additional or focused support for smaller fleets should be prioritized in programs and funding 

schemes. 

In the second half of the study the results were scaled to estimate the peak load impact of 

electrifying all class 3 through 7 trucks in New Jersey as well as the impact of implementing 

managed charging and onsite solar and battery at these depots. It was found that significant on-

peak load reductions can be seen with ~8,400 MW for managed charging, to ~10,000 MW for 

managed charging with solar + battery. This translates to avoided grid infrastructure cost 

savings of up to $1.803 billion for managed charging, and up to $2.150 billion when paired with 

onsite solar + battery. It should be noted that these savings were based on current grid 

expansion costs, as grid costs in the future may be more expensive, thus even larger savings by 

exploring these solutions.  
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Introduction 

Background 

Deployment of electric medium- and heavy-duty vehicles (MHDVs) is accelerating worldwide. 

Not only are more battery electric vehicles becoming commercially available, but policies at the 

local, state and federal levels encouraging zero emissions vehicle adoption are expanding, as 

recently exemplified with the signing into law of the Advanced Clean Trucks requirements in 

New Jersey in December 2021, and the draft Medium-and Heavy-Duty Zero-Emission Vehicle 

Action Plan by the Northeast State for Coordinated Air Use Management (NESCAUM).  

 

In order to meet these ambitious targets it is even more important for states such as New Jersey 

to understand the cost barriers associated with charging infrastructure so it can also begin 

accelerating the adoption of electric MHDVs. While we understand that every depot is unique, 

our approach of simulating several representative depots located in New Jersey of varying 

sizes, vehicle classes, schedules, and seasonal variation in electricity demand, can provide 

valuable insight into what does and does not work for certain MHDV market segments. 

Study objectives 

The purpose of this project was to realistically model electrification of MHDV fleets, class 3 

through 7, in New Jersey, using a set of case studies representing different vehicle classes and 

use cases. 

 

Two types of vehicle charging approaches were compared. The first, unmanaged charging, is 

when vehicles charge at full power as soon as trucks return to the depot. The second, managed 

charging, is when fleets optimize their charging times and charging power to reduce the cost of 

charging, resulting in charging during periods of lowest cost, which includes both energy- (per 

kWh) and peak power- (per kW) based costs. This latter cost is commonly referred to as a 

demand charge, which is defined as the sum of capacity, generation, transmission, distribution, 

and delivery charges, where applicable, that scaled with power, e.g., $/kW. 

 

The study also included the scenarios with an onsite solar photovoltaic (PV) system connected 

to a battery at the depot, providing supplemental electricity to the vehicle charging system. 

Previous work by GNA has demonstrated the importance of such systems to lower the total cost 

of ownership for electric vehicle depots. Managed charging simulations were performed both 

with and without a solar PV + battery system. 

 

The study objectives were: 

1. Determine depot electrification readiness by vehicle class. 

2. Calculate the total cost to depot owners under different assumptions of vehicle type, rate 

structure, season, and evaluating potential fuel cost savings for each use case. 

https://www.nj.gov/dep/rules/adoptions/adopt_20211220a.pdf
https://www.nj.gov/dep/rules/adoptions/adopt_20211220a.pdf
https://www.nj.gov/dep/rules/adoptions/adopt_20211220a.pdf
https://www.nescaum.org/documents/mhd-zev-action-plan-public-draft-03-10-2022.pdf
https://www.nescaum.org/documents/mhd-zev-action-plan-public-draft-03-10-2022.pdf
http://blogs.edf.org/energyexchange/files/2021/03/EDF-GNA-Final-March-2021.pdf
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3. Determining the impact of managed charging and depot solar and battery on the total 

cost of ownership of charging infrastructure.  

4. Calculate avoided cost and other impacts to grid operators, emphasizing grid expansion 

savings from managed charging and onsite PV. 
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Methodology 

Overview 

The approach used in this study began with a mixture of real vehicle fleet use data from New 

Jersey, New York, and California spanning vehicle classes 3 to 7. Each vehicle class was 

represented by one common use case for which ample data was available (detailed below); 

usage patterns were vetted by industry stakeholders as representative of on-the-ground 

experience. Input data consisted of a mixture of gasoline/diesel and electric vehicle driving and 

idle periods spanning between 5 and 19 months, with most vehicle classes encompassing 12 

months. For electric vehicle data, the fleet operated on a 24 hours/day schedule with several 

recharging events per day. For gasoline/diesel vehicles, vehicle odometer readings reported 

during refueling events every few days were converted into average daily driving distances and 

average fuel consumption, which were then converted to equivalent daily electricity 

consumption using typical engine efficiencies. For both types of data, simulations drew usage 

data randomly for each day within a season to provide representative usage patterns that varied 

day-to-day and season-to-season. Vehicle battery capacities were based on the largest 

commercially available for each vehicle class. 

Part 1: Depot electrification 

Seven-day vehicle use simulations were performed for each vehicle class in four seasons for a 

wide range of simulation parameters (optimization type, electric rate structure, number of 

charging ports, charger power, and when present, solar PV and battery capacities). For each 

scenario, results from these representative weeks were scaled to estimate the annual behavior 

of a fleet. 

 

Three optimization types (unmanaged charging, managed charging, and managed charging 

with a solar photovoltaic (PV) and battery storage system) were modeled. Unmanaged charging 

was not an optimization at all, as it always charged at full power as soon as vehicles were 

plugged in. Managed charging, by contrast, attempted to minimize charging cost for the depot, 

where cost was driven by one the four New Jersey electricity rate structures modeled based on 

real rate data (see Appendix A: Data, Electricity rate data section). For these optimizations, a 

24-hour look-ahead schedule was assumed that began at 3 pm each afternoon (consistent with 

PSE&G’s day-ahead pricing schedule) and continued over the next 24 hours, where charging 

was optionally scheduled in advance. 

 

Rate costs consisted of an hourly cost proportional to the energy consumed (expressed in 

$/kWh) plus a cost proportional to the maximum monthly power flow in any hour (expressed in 

$/kW, usually called the “demand charge”). Both of these rate components varied seasonally, 

and sometimes by time of day. For two of the four rate structures, a real-time pricing approach 

was modeled, whereby the energy cost consisted of both a fixed cost per kWh plus a cost which 

varied each hour of the year based on market forces; for this data, we used New Jersey 

average real-time locational marginal prices from PJM market data. 
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The simulation tool used in this study is called V2G-Sim, which was developed at Lawrence 

Berkeley National Laboratory and built to study the effects of vehicle electrification on electric 

grids. The version developed for this study was heavily modified from the original and grew out 

of work that Emerging Futures performed for the Midcontinent Independent System Operator in 

2019-2020. The model has been used successfully in a number of previous peer-reviewed 

studies. For more information, see Appendix B: V2G-Sim modifications. 

 

Based on the charging needs of each fleet and scenario, charging infrastructure equipment 

including onsite solar and battery was selected (See assumptions in section on Scenarios 

Performed). The cost of charging infrastructure, including chargers, cables, installation, 

warranties, contracts, utility and customer make-ready, and when present solar PV and battery 

systems, were not part of the optimization but were imposed as fixed annual costs depending 

on the configuration simulated. Cost data were gathered from several electric vehicle charging 

reports, as well as some installation contracts that were made available to us. All assumptions 

are documented in Appendix A: Data, Total cost of ownership section. 

Part 2: Grid impacts 

Results from Part 1 were used to calculate New Jersey-wide grid impacts, by extrapolating 

results at the depot level as if all vehicles in each vehicle class in the state were electrified, 

using total New Jersey vehicle registrations by class. The main impacts explored were: 

1. Increase in peak power demand for each optimization type (unmanaged charging, 

managed charging, and managed charging with solar PV plus battery). 

2. Avoided grid upgrade costs based on how much lower peak load from vehicle charging 

is when managed charging is implemented, compared to unmanaged charging. We 

explored grid savings when switching to both managed charging, and managed charging 

with solar PV plus battery. A range in cost per MW of peak power was adopted, based 

on two complementary methods of estimating utility costs of providing new grid 

infrastructure (for more information, see Appendix A: Data, Grid expansion savings): 

a. The first method used the highest-cost demand charge of the rate structures 

modeled in this study, which provided a minimum estimate for the utility’s actual 

cost of providing peak power.  

b. The second method used estimated total grid expansion costs from 2021 through 

2050 for New Jersey Jersey to determine a maximum estimated cost per MW. 

These costs were based on a 2020 report released by ChargeEVC. 

3. New Jersey-wide total cost of ownership for vehicle charging across all vehicle classes 

modeled, by aggregating total cost for each vehicle class and scaling it to all of New 

Jersey. 

 

It is worth reiterating that only class 3-7 trucks were modeled in this study, and therefore New 

Jersey-wide grid results do not include other vehicle classes like passenger or class 8 trucks. 

http://v2gsim.lbl.gov/
https://www.misoenergy.org/
http://www.chargevc.org/wp-content/uploads/2020/10/ChargEVC-Full-Market-Electrification-Study-FINAL-Oct-7-2020.pdf
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Vehicle class assumptions 

Table 1 summarizes the vehicle use cases used to represent on the ground fleets. Each use 

case is based on real-world measured vehicle use for New Jersey and New York (for classes 3-

6) and California (for class 7), with input from industry stakeholders to ensure vehicle use 

patterns were representative of on-the-ground experience in New Jersey. Depot sizes assigned 

for each use case were based on the average number of vehicles in each vehicle class in the 

empirical data, which varied from 2 (landscaping and yard tractors) to 11 (wired telecom). While 

in reality fleets are often comprised of more than one vehicle type, for this study and the five use 

cases ultimately selected, each was assigned to one dominant vehicle class from that market 

segment. 

 

Table 1 

Vehicle use cases modeled 

Vehicle use 

case 

Vehicle 

class 

Depot 

size 

Average 

energy 

use 

(kWh/day) 

Average 

efficiency 

(kWh/mi) 

Battery 

capacities 

(kWh) 

Max 

charging 

power 

(kW) 

Landscaping 3 2 82 1.04 140 19 

Food service 4 4 89 1.11 156 21 

Wired telecom 5 11 122 1.93 226 31 

Armored car 6 7 259 3.36 343 56 

Yard tractors 7 2 50 3.50 80, 160 22 

Note: Fuel efficiency for yard tractors was inferred based on an average fuel efficiency for class 

7 and 8 trucks in New Jersey from Geotab. 

 

Data on average daily energy use and average vehicle efficiency were based on actual vehicle 

fuel consumption (gasoline and/or diesel) and miles driven; the fuel consumption was converted 

into an equivalent electrical energy consumption estimates based on the average engine 

efficiencies of fuel (gasoline or diesel)-based and electric engines (see Appendix A: Data, 

Energy use estimates). The impact of seasonal temperature differences on vehicle battery 

efficiency was included in the model and estimated based on average outdoor temperature in 

2020 and 2021; see Appendix A: Data, Seasonal energy demand multipliers section for more 

details on how seasonal demand multipliers were calculated. 

 

Capacities of vehicle batteries were based on the largest existing commercially available 

batteries in each vehicle class at the time of our analysis (mid-2021), based on information 

provided by the Snohomish County Public Utility District (SNOPUD). For details, see the section 

on Battery capacity estimates in Appendix A: Data. For yard trucks, the usage data originated 

from existing battery electric vehicles, so the same configurations and capacities were used 

without modification. These vehicles were procured in 2020 and were similarly the largest 

battery capacity available on the market for class 7 yard trucks at that time. 

 

https://www.geotab.com/truck-mpg-benchmark/
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To determine the charging power needed for each fleet use case, the average daily energy 

consumption to meet the fleet’s need was calculated; this was divided by the available charging 

window for each use case during weekday operations. This latter information was unique to 

each vehicle class and was based on an understanding of depot operator schedules as 

communicated to Emerging Futures from our data suppliers. The base charging power was 

rounded slightly to conform to standard charging station capacities offered in the industry (e.g., 

20, 30, or 60 kW). These maximum charging power values were chosen to capture nearly the 

full range of daily vehicle energy consumption, but in some cases not all vehicle driving 

itineraries were able to be fully charged overnight. Therefore, multiple charging infrastructure 

configurations were explored using higher maximum charging power values, ranging from 50 to 

150 kW depending on fleet use case. These were based on standard increments from these 

base levels, and were used in some of the simulation runs to determine the ability of fleets to 

electrify using existing technology. 

Electricity rates 

To assess the cost of charging, we selected four rate structures from three utilities operating in 

New Jersey: Public Service Enterprise Group (PSEG), Atlantic City Electric, and Orange and 

Rockland Utilities, Inc. The rates were selected to cover a diverse set of rate structures currently 

offered to commercial customers at their rated peak power. They were also based on real 2021 

rates in New Jersey in order to explore variations in how electricity costs vary with time of day, 

time of year, and amount of power consumed. Table 2 summarizes the main differences among 

these four rate structures. All four rate structures included some degree of seasonal variation in 

cost. Detailed information is provided in the Rate structures section of Appendix A: Data. 

 

Table 2 

Rate structures modeled in this study 

No. Description Label RTP1 
included? 

Demand 
holiday? 

Maximum 
demand 
charge 
($/kW) 

Notes 

1 PSEG rates with 
RTP 

PSEG 
RTP 

Yes Partial 31.07 Demand charge 
reflects discount 
of 50% over full 
rate; rate sheet 
depends on peak 
monthly power2 

2 Atlantic City Monthly 
Generating Service - 
Secondary with RTP 

AC 
RTP 

Yes Partial 4.21  

3 PSEG Basic 
Generating Service - 
Residential Small 
Commercial Pricing 

PSEG 
TOU 

No No 18.32  
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with TOU3 rate 

4 Orange and 
Rockland Basic 
Generating Service - 
Residential Small 
Commercial Pricing 
with TOU rate 

O&R 
TOU 

No No 5.82 Summer time-of-
use rate has 3 
tiers 

1 Real-time pricing 
2 Rate sheet used: General Light and Power (GLP: <150 kW) or Large Power and Lighting - 

Secondary (LPL-S: >150 kW) 
3 Time-of-use 

 

For two of the rates (PSEG RTP and AC RTP), a real-time price (RTP) that varied hourly 

throughout the year was added to the actual rate structure. This RTP was based on data from 

PJM’s locational marginal prices from August 5, 2020 through August 4, 2021. More details are 

provided in Appendix A: Data, Real-time pricing data. These rates also offered a partial demand 

charge holiday depending on the peak power of each fleet use case. The remaining two rates 

were time-of-use (TOU) rates which offered peak and off-peak prices and for one of the rates an 

additional summer off peak price for the energy portion of the fleet's electricity bill. There was no 

time variance in price for the demand portion of the bill for any rate except for the PSEG RTP 

rate, which had different peak and off-peak demand charge rates during the summer (June 

through September). 

Charging infrastructure costs 

Other depot charging infrastructure ownership cost elements included the following: 

● Solar PV capital 

● Solar battery capital 

● Charger capital 

● Charger cables 

● Managed charging contract 

● Charger installation 

● Charger warranty 

● Utility make-ready 

● Customer make-ready 

 

These cost assumptions were obtained from a variety of sources as detailed in the Total cost of 

ownership section of Appendix A: Data. In several cases, empirical linear or nonlinear fits to the 

data were required in order to interpolate to the capacities simulated in our model. These fits are 

also documented in the Total cost of ownership section.  
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Fleet scenarios 

For each vehicle use case, several hundred simulations were performed representing 

combinations of parameter assumptions, which are summarized in Table 3. In total, more than 

4,400 simulations were performed. 
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Table 3 

Summary of simulations performed 

Vehicle use 

case 

Vehicle 

class 

Vehicle 

Battery 

Capacity 

(kWh) Months 

Capacity 

per 

charging 

station (kW) 

Rate 

structure* 

Solar 

PV 

(kW) 

Solar battery 

(kWh) 

# 

ports* 

Total 

no. of 

runs 

Landscaping 3 140 1,4,7,10 20,50,100 1-4 23 50,100,200 2 352 

Food service 4 156 1,4,7,10 20,50,100 1-4 64 140,280,560 2,4 688 

Wired telecom 5 226 1,4,7,10 30,50,100 1-4 294 645,1290,2580 2-10 1696 

Armored car 6 343 1,4,7,10 60,100,150 1-4 220 480,960,1920 2-6 1024 

Yard tractors 7 80, 160 1,4,7,10 20,50,100 1-4 23 50,100,200 2 688 

Total         4448 

*Optimization type 

1 Unmanaged charging 

2 Managed charging 

3 Managed charging with solar PV + battery storage 

*Rate structure 

1 PSE&G RTP 

2 Atlantic City RTP 

3 PSEG TOU 

4 Orange/Rockland TOU 

*# ports 

even-number 

restriction limited to two ports per charger; >2 ports indicates multiple chargers 
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Four different weeks throughout the year were simulated to represent the four seasons. For 

each week, vehicle use data were drawn from a single month of a corresponding season when 

available (December or January for winter, April for spring, July for summer, and October for 

autumn). For one vehicle use case (armored cars), data were not available for the summer and 

autumn, so for these two seasons, all available data (from December through May) were 

sampled, and seasonal energy use multiplier were applied to estimate the energy demand 

experienced for those time periods. This multiplier was determined using the seasonal effect 

seen in similar vehicle classes. Simulations were performed for three maximum charging station 

power levels that depended on vehicle use case, as discussed earlier. 

 

Three optimization types (unmanaged, managed, and managed with solar PV + battery) were 

simulated. For the unmanaged charging optimization, none of the remaining parameters 

described below were varied, but we did calculate the electricity cost for each of the four rate 

structures simulated. For the other two optimization types, electricity cost was explicitly 

minimized, so separate simulations were performed for each rate structure. As stated above, 

four rate structures were applied to determine the cost of charging: two real-time pricing 

structures (PSE&G RTP, and AC RTP), and two time-of-use pricing structures (PSE&G TOU, 

and O&R TOU). 

 

For the solar PV scenarios, three different solar battery sizes were simulated. The middle value 

was chosen based on the daily energy consumed by the depot when averaged over the week, 

multiplied by the seasonal energy consumption multiplier averaged over the year. The low and 

high values were then set equal to 50% and 200% of this value. The PV array power was sized 

to provide 80% of the average annual vehicle demand, based on the recommendation in the 

GNA report. Details are provided in Appendix A: Data. 

 

Based on industry practices, each charger was assumed to have two ports, meaning it could 

charge up to two vehicles simultaneously. To investigate the impact on total cost of 

infrastructure, a few additional scenarios were run for fleet classes 3, 4, and 5 to explore 

increasing the number of ports (e.g., additional chargers) per depot. This was due to the longer 

dwell times for these use cases and therefore were good candidates to explore higher numbers 

of charging ports per depot. 

 

The depot power levels were chosen based on standard transformer ratings (150 or 500 kVA, 

equivalent to kW). 150 kW was used for the two smallest depot size use cases (landscaping 

and yard tractors), where maximum demand was always less than 150 kW, while 500 kW were 

used for the other vehicle use cases. 

Model descriptions 

For each fleet, a charging load profile, based on real world driving data, and a charging 

optimization model was developed. These were simulated using a simulation tool developed by 

Lawrence Berkeley National Laboratory called V2G-Sim. Detailed information about the 

optimizations using this tool are detailed in Appendix B: V2G-Sim modifications. 

http://blogs.edf.org/energyexchange/files/2021/03/EDF-GNA-Final-March-2021.pdf
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Input data for the simulations was derived from real-world driving data supplied by industry 

stakeholders. As described in the Methodology overview, vehicle odometer readings from 

gasoline or diesel vehicles reported every few days during refueling events were captured and 

processed to provide estimated daily driving over a period of approximately 12 months for most 

vehicle use cases; in one case (armored cars, class 6), only five months of driving data were 

available. Together with fuel consumption estimates and average efficiencies of gasoline and 

diesel engines, daily distances were converted into equivalent daily electricity charging load 

profile distributions. Fleet load values were scaled by seasonal multipliers reflecting average 

outdoor temperatures in New Jersey, which drove ancillary cabin loads (heating or air 

conditioning) that increased electricity consumption in most seasons. Details of these 

conversion steps along with the extensive data cleaning and preparation required are 

documented in detail in Appendix A: Data. For one vehicle use case (yard tractors, class 7), 

actual electric vehicle consumption data were available every few minutes over a 19-month 

period, so were used without modification. 

 

Once operational and driving data were converted into electricity charging load profiles, seven-

day simulations were generated by sampling randomly from daily data within a given season to 

generate typical driving patterns that varied day-to-day. These load patterns drove the 

optimization model for recharging vehicles at the depot during periods of non-use. For vehicle 

classes 3-6, this occurred at night, whereas for vehicle class 7 that operated 24 hours/day, 

recharging occurred in short periods throughout the day. For all vehicle classes, there was a 

period of 1-3 days each week ending on Sunday where vehicles were not operated and could 

fully recharge. Simulations always began on Sunday at 3 pm and extended to the following 

Sunday at 3 pm; the resulting time series data from 12 am to 3 pm on the second Sunday were 

shifted to the first Sunday for presentation purposes, in order to provide seven full days of data 

from 12 am to 12 am. 

Types of charging optimizations performed 

For each scenario and for all four of the rate structures, three types of charging optimizations 

were performed: 

1. Unmanaged charging: Vehicles were connected to a power source as soon as they 

returned to the depot, and could charge at full power until their batteries were full. No 

optimization was performed; the cost of providing such power was simply calculated as 

an output. 

2. Managed charging: Vehicles were also connected to a power source as soon as they 

returned to the depot, but charging was based on an optimization algorithm that aimed to 

minimize the total cost of electricity paid by the depot owner. As a result, charging was 

concentrated during periods of lowest cost, while also minimizing the demand charge 

based on the highest hourly power demand in a given month. This model was adapted 

for each rate structure. 

3. Managed charging with solar PV + battery: Managed charging was performed as above, 

but with the addition of a large solar PV system connected to a large battery. 
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Results 

Part 1: Depot electrification 

Result 1: Can depots electrify? 
Using real fleet trip data, we evaluated the fraction of vehicle trips that could be served as a 

function of daily charging sessions using existing commercially available technology, shown in 

Table 4. Our default assumption is a single charging session,  which occurs in the evening after 

completing the day’s travel. We found that vehicle classes 3-5 had served trip fractions between 

81.5% and 86.2%, while class 6 (armored cars) stood out with the lowest fraction of served trips 

(66.4%). 

 

Table 4 

Served trips by vehicle class, as a function of the number of daily charging sessions 

Vehicle use 

case (class) 

Number of daily charging sessions 

1 2 3 

Landscaping 

(3) 84.53% 99.4% 99.9% 

Food service 

(4) 81.52% 97.1% 99.5% 

Wired telecom 

(5) 86.21% 99.0% 99.9% 

Armored car (6) 66.38% 88.8% 96.6% 

 

Note that yard tractors operated 24 hours a day, 5 days a week, allowing for many daily 

opportunities for recharging; 100% of vehicle trips in the database could be served by our 

assumed charging infrastructure. 

 

To reduce the number of unserved trips, the number of recharge events could be increased, 

e.g., by adjusting operating schedules and/or charging while away from the depot, and either 

returning to the depot throughout the day, or using additional charging infrastructure (such as 

public charging). These additional charging sessions represent hypothetical cases that would 

involve changing vehicle schedules, however. Table 4 provides revised estimates of the fraction 

of served trips, which increase considerably with two daily charging sessions, and climbs to 

almost 100% for classes 3-5 (and 96.6% for class 6) for three daily charging sessions. 

 

Table 5 provides additional charging characteristics, including the average and maximum travel 

distances, available daily charging times (excluding weekend), and required charging times for 

different assumed travel distances and charging power levels. Note that for all vehicle classes, 

we assumed there were two ports per charger, so the available daily charging time was typically 
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half the duration shown, if the two vehicles sharing a charger had about the same energy 

consumption (though this was not always the case). Additional ways to serve 100% of trips 

could come from increased battery sizes coming onto the market, en-route charging, higher 

charging power, or single port charging. 

 

Table 5 

Charging characteristics by vehicle class 

Vehicle use 

case (class) 

Daily travel distance (mi) Charging time (h) 

Maximum 

charging 

power (kW) Average Maximum 

Daily 

available 

(excluding 

weekends) 

Average 

energy need, 

default rated 

power 

Maximum 

energy need, 

highest rated 

power 

Landscaping 

(3) 78.3 423 13.0 4.27 4.40 100 

Food service 

(4) 80.0 596 12.5 5.52 7.12 100 

Wired 

telecom (5) 63.2 400 12.0 4.55 9.49 100 

Armored car 

(6) 77.2 288 14.0 5.42 8.34 150 

Yard tractors 

(7) N/A N/A 2.49 2.51 0.59 100 

 

Figure 1 shows the distribution of daily mileages for wired telecom vehicles (class 5). Only 10% 

of trips were >118 miles/day, 1% of trips were >210 miles/day, and 0.1% of trips were >300 

miles/day. Other vehicle classes showed similar skewed distributions; another vehicle class 

example is shown in Figure A3 in Appendix A. 

 

Figure 1 

Histogram of daily mileage traveled by wired telecom vehicles 
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We find that for all vehicle classes, the default charging power is adequate to recharge vehicles 

for the average energy need at the default rated power level, but for vehicle classes 3-6, the 

default charging power is not adequate to recharge for the maximum energy need (represented 

by a single data point per vehicle class, which constituted <0.1% of all trips for vehicle classes 

3-5, and <0.5% of all trips for vehicle class 6). However, the highest rated power level makes it 

possible to recharge even the maximum energy need in the available time for recharging. 

 

Our underlying assumptions for these estimates are summarized in Table 6. While the average 

daily energy use was lower than the battery capacity in all cases, for the maximum (daily) 

session energy use cases, the limiting factor is battery capacity—more than three times the 

rated capacity for classes 3 and 6, and more than four times for vehicle classes 4 and 5. 

However, as for all cases these are significant charging windows, and stops to allow for a 

second charging session as well as to allow for en-route fast charging could meet energy 

needs. 

 

Table 6 

Vehicle trip data and assumptions by vehicle class 

Vehicle use 

case Vehicle class 

Number of 

data points 

Default 

charging 

power (kW) 

Battery 

capacity 

(kWh) 

Average daily 

energy use 

(kWh) 

Maximum 

session 

energy use 

(kWh) 

Landscaping 3 1086 20 140 85 440 



  27 

Food service 4 3468 20 156 110 712 

Wired 

telecom 5 9106 30 226 136 949 

Armored car 6 232 60 343 325 1,251 

Yard 

tractors*,** 7 7292 20 80 50 59 

*Yard tractors had 80 or 160 kWh battery, but the average and maximum per-shift consumption were 8.4 

and 59.3 kWh. 

Result 2: Cost of charging infrastructure 

For each depot use case the total cost of charging infrastructure (including hardware, contracts, 

installation, warranties, and make-ready) was calculated. Figure 2 shows the cost of all charging 

infrastructure expressed as net present value (NPV) per vehicle. Results are shown for 

unmanaged charging, broken down by cost category for vehicle classes 3-7. The main cost 

categories were warranty and make-ready costs, charger capital plus charger cable (which were 

a minor contribution) costs, and charger installation costs. Although individual cost contributions 

vary with vehicle class, the total cost is similar, ranging from ~$90,000 to ~$127,000 per vehicle. 

In all cases at least half of the capital cost for charging infrastructure was attributed to make-

ready + warranties, and up to 32% for make-ready alone.   

 

Figure 2 
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Capital cost breakdown for unmanaged charging by vehicle class

 
 

Costs changed considerably for managed charging optimizations. For instance, Figure 3 shows 

a comparison among the three optimization types for Food service (class 4). Most cost 

categories are much lower for the two managed charging optimizations due to lower maximum 

charger requirements and hence cheaper equipment. As an example, for the four-vehicle Food 

service fleet, unmanaged charging requires two 100 kW chargers, whereas managed charging 

requires only a single 50 kW charger resulting in capital cost savings of over $50,000. In 

addition, for managed charging with solar PV + battery, as expected there are significant 

additional capital costs for this equipment. This pattern of capital cost variation with optimization 

type is similar across all vehicle classes. Note, this added cost for onsite solar and battery does 

not reflect the electricity cost savings the fleet would see and will be explored further in section 

Results 5: Managed charging with solar PV + battery impacts. 

 

Figure 3 

Breakdown of capital costs for Food service among the three optimization types 
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Table 7 provides this breakdown for all vehicle classes and optimization types. 

 

Table 7 

Capital costs (NPV/vehicle) by vehicle class and optimization type 

Vehicle 

class/type and 

optimization type 

Warranty + 

Make-ready 

Charger capital 

+ Charger 

cables 

Charger 

contracts Charger install 

Solar PV + Solar 

battery 

3 (Unmanaged) $69,389 $32,409 $0 $23,710 $0 

4 (Unmanaged) $62,521 $32,409 $0 $18,312 $0 

5 (Unmanaged) $48,759 $29,463 $0 $11,832 $0 

6 (Unmanaged) $75,016 $37,850 $0 $14,396 $0 

7 (Unmanaged) $69,389 $32,409 $0 $23,710 $0 

3 (Managed) $31,267 $5,991 $1,900 $21,382 $0 

4 (Managed) $25,492 $8,947 $950 $11,113 $0 

5 (Managed) $18,054 $9,761 $345 $8,050 $0 

6 (Managed) $24,224 $12,085 $543 $9,937 $0 
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7 (Managed) $31,267 $5,991 $1,900 $21,382 $0 

3 (Mgd. w/ solar) $31,267 $5,991 $1,900 $21,382 $44,061 

4 (Mgd. w/ solar) $25,492 $8,947 $950 $11,113 $61,610 

5 (Mgd. w/ solar) $18,054 $9,761 $345 $8,050 $103,319 

6 (Mgd. w/ solar) $24,224 $12,085 $543 $9,937 $121,196 

7 (Mgd. w/ solar) $31,267 $5,991 $1,900 $21,382 $44,061 

 

Note that these capital costs do not include any infrastructure incentives aside from 26% federal 

sales tax credits for solar PV and storage. 

 

Result 3: Unmanaged charging impacts 

Electricity costs 

As introduced earlier, four existing rate structures in New Jersey were used to evaluate the 

potential cost of charging for these selected fleet use cases. The four rate structures, outlined in 

Table 2, are: PSEG RTP (rate 1), AC RTP (rate 2), PSEG TOU (rate 3), and O&R TOU (rate 4). 

The two PSEG-based rate structures (1 and 3) have generally higher demand charges than the 

other two rate structures. All four rate structures included some degree of seasonal variation in 

cost. For our simulations, we find that PSEG RTP typically results in the highest monthly 

electricity costs, whereas AC RTP results in the lowest costs. The other two rate structures 

result in intermediate costs. 

 

For unmanaged charging, electricity costs varied considerably with rate structure, with the 

average annual charge per vehicle ranging from $191k (rate 1) to $29k (rate 2), and the overall 

range in cost varying from 22% to 240% of capital costs. See Figure 4. For all vehicle classes 

the Atlantic City RTP (rate 2) resulted in the lowest cost for charging. 

 

Figure 4 

Total cost of unmanaged charging, broken down into capital and electricity costs 
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In Figure 5, we break down the electricity cost for the four rate structures for vehicle class 3 

(landscaping). We see that 58-94% of the fleet’s electricity bill (depending on rate structure) is 

due to demand charges. The pattern observed for other vehicle classes was similar. As the 

vehicles’ charging is unmanaged, the maximum rated charging power at the depot is used as 

trucks are typically arriving to the depot to charge at the same time. Therefore, the peak power 

is very high for a short duration of time causing a significant portion of the electricity bill to be 

attributed to peak demand. 

 

Figure 5 

Breakdown of unmanaged charging electricity cost for landscaping 
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Result 4: Managed charging impacts 
 

For all use cases a managed charging optimization was simulated and the same rates applied 

to evaluate the impact on a fleet's electricity bill as well as up-front hardware costs. We find that 

both capital and electricity costs are lower for managed charging than unmanaged charging for 

every vehicle class and rate structure, indicating a clear advantage. The cost savings, 

unsurprisingly, were highest for the highest-cost electricity rate (PSEG RTP), and lowest for the 

lowest-cost rate (AC RTP). See Figure 6. 

 

Figure 6 

Savings in total cost of managed vs. unmanaged charging 
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Table 8 shows the absolute cost breakdown by vehicle class and rate structure. Here one can 

see annual electricity cost savings can range from ~$15k to ~$175k depending on the rate 

structure. 

 

Table 8 

Total cost of managed vs. unmanaged charging for best and worst rate structures 

(NPV/vehicle) 

Vehicle 

class/type 

PSEG RTP 

(unmanaged) 

PSEG RTP 

(managed) 

AC RTP 

(unmanaged) 

AC RTP 

(managed) 

3: Landscaping $191,050 $49,996 $28,569 $6,484 

4: Food service $129,409 $45,909 $24,845 $9,009 

5: Telecom $181,360 $45,917 $31,351 $12,352 

6: Armored 

cars $212,287 $60,800 $44,199 $16,340 

7: Yard tractors $246,160 $70,267 $42,686 $10,508 

 

Figure 7 shows the difference in charging pattern over a 48-hour period for food service, which 

is a fleet of four class 4 vehicles, illustrating how much lower the peak rate is when charging is 

spread across the entire available charging window, in this case overnight, rather than being 

concentrated in the first few hours for unmanaged charging. This reduction results in $66,739 

lower capital costs (NPV per vehicle) for charging equipment, and between $15,836 (AC RTP 
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rate) and $83,500 (PSEG RTP rate) lower electricity costs (NPV per vehicle), mainly due to 

reduced peak demand and as a result demand charges. 

 

Figure 7 

Time series of food service vehicle charging for unmanaged and managed charging 

 
 

Figure 8 shows the differences for yard tractors, which illustrate a similar reduction in peak rates 

for managed charging as for food service. However, unlike food service (and other simulated 

vehicle classes), yard tractors are able to charge for short periods throughout their around-the-

clock operational schedule. As a result, the managed charging savings are even higher because 

the fleet’s charging can be spread across more hours and as a result is able to significantly 

reduce its peak power. Moreover, charging tends to take place during periods of lower hourly 

energy price. 

 

Figure 8 

Time series of yard tractor vehicle charging for unmanaged and managed charging 



  35 

 
 

Electricity costs are broken down into demand charges and other costs for landscaping in 

Figure 9, illustrating the large reductions in demand charges between unmanaged and 

managed charging. Despite these large reductions, the overall order of costs among the four 

rates remains the same with rate 2, Atlantic City RTP, resulting in the lowest electricity costs for 

all scenarios. This pattern holds true for all vehicle classes modeled. 

 

Figure 9 

Comparison of electricity cost breakdown for unmanaged vs. managed charging for 

landscaping 
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Result 5: Managed charging with solar PV + battery impacts 

Electricity costs 

When applying onsite solar + battery to the charging infrastructure, there is a significant annual 

savings in electricity cost seen, ranging from $20k to $208k when compared to unmanaged 

charging, or 75% to 93% savings. Figure 10 illustrates this by showing differences from 

unmanaged charging, for every vehicle class as well as the capital cost investments required. 

When comparing to unmanaged charging it is clear that the savings with managing charging 

with solar and storage outweighs added capital cost for hardware for all vehicle classes. 

However, to get a full picture of the cause of these significant savings, including capital cost 

savings for vehicle classes 5 and 6, it is more pragmatic to compare the savings of onsite solar 

and storage to the managed charging scenarios. 

 

Figure 10 

Savings in total cost of managed charging with solar + battery vs. unmanaged charging 
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In Table 9 the savings, ranging from $2k to $33k, of onsite solar and battery storage compared 

to managed charging, or 19% to 63%, can be seen. However, due to the hardware costs of the 

onsite solar and battery as well as the significant hardware savings seen from managing 

charging, the electricity cost savings are no longer able to offset the higher capital costs.  

Although, for yard tractors the trade-off is closer to break-even for PSEG RTP (the most 

expensive rate) than for any other vehicle class/rate combination. Therefore, fleets which have 

constrained charging windows and minimal capabilities to manage their charging are most likely 

to see a return of investment in solar and storage. Savings could also be seen if the onsite solar 

and storage was utilized for other grid services.  

 

Table 9 

Total cost savings of managed charging with solar + battery vs. managed charging by 

vehicle class, broken down into capital and electricity costs by rate structure 

(NPV/vehicle). A negative cost savings indicates a cost increase. 

Vehicle 

class/type 

Capital cost 

savings 

PSEG RTP 

(rate 1) 

electricity cost 

savings 

AC RTP (rate 

2) electricity 

cost savings 

PSEG TOU 

(rate 3) 

electricity cost 

savings 

O&R TOU (rate 

4) electricity 

cost savings 

3: Landscaping -$44,061 $9,298 $2,166 $6,654 $3,741 

4: Food service -$61,610 $13,991 $3,787 $10,655 $8,109 

5: Telecom -$103,319 $21,232 $6,627 $17,862 $12,378 
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6: Armored 

cars -$121,196 $25,580 $7,686 $19,482 $15,255 

7: Yard tractors -$44,061 $32,503 $6,225 $20,846 $13,982 

 

There were significant peak power reductions seen for each use case. Figure 11 shows a 

comparison of charging profiles for food service for managed charging with vs. without solar + 

battery. The total daily load is the same in each case. Although power levels vary throughout the 

charging period, there is a reduction in maximum grid power from 38.8 kW to 27.0 kW for the 

four-vehicle fleet, which is supplemented by power from stored solar energy. 

 

Figure 11 

Comparison of managed charging profiles with vs. without solar + battery for food 

service vehicles 

 
 

Figure 12 shows a comparison for managed charging for yard tractors with vs. without solar + 

battery, which shows a reduction in maximum grid charging from 26.8 kW to 9.2 kW for the two-

vehicle fleet, again supplemented by power from stored solar energy. However, due to the more 

frequent opportunities for charging throughout the day, charging is split up into multiple periods 

each day. 
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Figure 12 

Comparison of managed charging profiles with vs. without solar + battery for yard 

tractors 

 

Result 6: Fuel cost comparison 

We calculated avoided fuel costs for vehicle classes 3-7 using actual costs paid for fuel; see 

Table 10. Depending on vehicle class, number of days per week that vehicles operate, and 

depot size, annual fuel costs vary from ~$3,400/yr (class 7) to ~$64,000/yr (class 5). By 

comparison, as discussed earlier, electricity costs vary widely depending on optimization type 

and rate. In the best case (managed charging, AC RTP rate), electricity cost is between 22% 

and 62% of fuel costs, whereas in the worst case (unmanaged charging, PSEG RTP rate) the 

cost is between 3.2 and 14.6 times higher. 
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Table 10 

Fuel vs. electricity annual costs for depot 

    Scaled to year and depot: Electricity cost ($/yr) 

Vehicle use case 

Vehicle 

class 

Days 

per 

week 

Depot 

size 

Distance 

(mi/yr) 

Fuel used 

(gal/yr) 

Fuel cost 

($/yr) 

Best 

(Managed, 

AC RTP) 

Worst 

(Unmanaged, 

PSEG RTP) 

Landscaping 3 4 2 27,096 2,031 $5,385 $1,321 $38,918 

Food service 4 5 4 68,255 6,038 $15,959 $3,670 $52,722 

Wired telecom 5 6 11 180,213 23,945 $63,841 $13,839 $203,192 

Armored car 6 5 7 84,542 14,776 $41,084 $11,650 $151,353 

Yard tractors 7 5 2 7,476 1,236 $3,440 $2,141 $50,144 

Note: Fuel use for yard tractors was inferred based on an average fuel efficiency for class 7 and 

8 trucks in New Jersey from Geotab. 

 

Table 11 shows fuel cost relative to the total cost of ownership, which can be higher or lower 

than fuel costs depending on vehicle use case in the best case (managed charging, AC RTP 

rate). For all but wired telecom, it is more expensive to operate the depot using electricity, but as 

annual fuel cost increases, this difference becomes smaller, approaching 10% for armored cars 

- and for wired telecom, it is 15% cheaper to use electricity. 

 

Table 11 

Total cost of ownership relative to estimated fuel costs, annual costs for depot 

  Best (Managed, AC RTP) 

Vehicle use case 

Fuel cost 

($/yr) 

Total cost of 

ownership ($/yr) 

Savings 

relative to fuel 

costs ($/yr) 

Savings 

relative to fuel 

costs (%) 

Landscaping (Class 3) $5,385 $13,653 -$8,268 -154% 

Food service (Class 4) $15,959 $22,616 -$6,657 -42% 

Wired telecom (Class 5) $63,841 $54,408 $9,433 15% 

Armored car (Class 6) $41,084 $45,009 -$3,924 -10% 

Yard tractors (Class 7) $3,440 $14,473 -$11,033 -321% 

 

While Table 7 showed that electricity costs can be lower than fuel costs for all vehicle uses 

cases if using a favorable rate, when infrastructure costs are included, there are only savings 

over fuel costs for one use case (wired telecom). Put another way, without financial support for 

fleet infrastructure, these additional costs make it difficult to breakeven for most use cases. 

https://www.geotab.com/truck-mpg-benchmark/
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To shed light on why these results appear to vary strongly with vehicle use case, we 

extrapolated costs from our simulated scenarios to estimate the total cost of ownership when 

the number of vehicles per depot increased, along with additional charging infrastructure. Such 

a situation is plausible whenever the number of hours needed to charge is less than the 

available charging time across all available chargers (see Table 5). 

 

As an example, consider landscaping. With an average daily energy demand of 85 kWh per 

vehicle, a single 20 kW charger with 13.0 h of charging time can recharge just over 3 vehicles 

on average. While the total cost of ownership is much higher than the fuel costs at the default 

depot size of two, a cost breakeven point is reached at a depot size of just over 15 vehicles with 

five chargers, and with higher-powered chargers, the breakeven point is reached with fewer 

vehicles and fewer chargers. This is because the fuel cost increases linearly with depot size, 

whereas the total cost of ownership increases much more gradually because the cost is 

dominated by capital cost, which is unchanged; only electricity cost increases with depot size.  

 

Figure 13 gives an example of a single 100 kW charger able to support 15.3 landscaping 

vehicles on average; the cost breakeven depot size occurs at 12.5 vehicles. Note, however, that 

the breakeven point would change depending on operating conditions of the fleet (shorter time 

windows, driver shift constraints, etc.). 

 

Figure 13 

Total cost of ownership vs. depot size for landscaping for 100 kW charger case 
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For other vehicle uses cases, we observe similar crossover points around ~8 to ~10 vehicles, 

suggesting that, in general, charging depots with ~8 to ~15 vehicles have the potential to have a 

lower total cost of ownership than traditional fueling costs. This shows that smaller fleets with 

depot sizes of less than 15 trucks are the most challenged to see fuel cost savings, and 

infrastructure support for these fleets should be prioritized. 

Part 2: Grid Impacts 

In this section of the study, we scaled our estimated depot-level costs and impacts to all of New 

Jersey, focusing on the impact of charging on the grid, and the impact on grid costs of using 

managed charging with solar + storage. 

 

Result 7: Avoided infrastructure costs of managed charging 

Avoided peak load 

Figure 14 shows the estimated New Jersey peak load by optimization type, obtained by scaling 

up the numbers of vehicles in each simulated vehicle class to equal state totals based on 

vehicle registrations (see section on Scaling results to New Jersey in Appendix A: Data). Total 

avoided peak loads relative to unmanaged charging, with breakdown by vehicle class, are 

shown in Table 12. Avoided peak load ranges from ~8,400 MW for managed charging, to 

~10,000 MW for managed charging with solar + battery. 

 

Figure 14 

New Jersey peak load from electric vehicles by optimization type 
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Table 12 

Avoided New Jersey peak load (relative to unmanaged charging) by vehicle class (MW) 

Vehicle class 

Managed 

charging 

Managed charging w/ solar 

+ battery Number of vehicles 

Landscaping (Class 3) 1,435 1,589 37,758 

Food service (Class 4) 1,112 1,380 44,870 

Wired telecom (Class 5) 1,868 2,110 55,449 

Armored car (Class 6) 2,145 2,570 48,018 

Yard tractors ( Class 7) 1,865 2,398 34,162 

Sum 8,424 10,047 220,258 

Avoided costs 

Based on the estimated New Jersey avoided peak load depicted above, Table 13 shows our 

estimated ranges of avoided New Jersey infrastructure costs arising from these grid expansion 

savings, broken down by vehicle class. Savings per kW were estimated from two sources, 

detailed in the second on Grid expansion savings in Appendix A: Data. Note that these 

estimates of the cost of infrastructure may increase substantially in the future. Savings from 

managed charging with solar + battery included are higher from managed charging alone. Total 
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(not annual) avoided infrastructure costs are between $320M and $1,803M for managed 

charging, and between $382M and $2,150M for managed charging with solar + battery. 

 

Table 13 

Avoided New Jersey infrastructure costs by vehicle class ($M) 

Vehicle class/type 

Managed charging 

(Minimum) 

Managed 

charging 

(Maximum) 

Managed charging 

w/ solar + battery 

(Minimum) 

Managed charging w/ 

solar + battery 

(Maximum) 

Landscaping (Class 3) $55 $307 $60 $340 

Food service (Class 4) $42 $238 $52 $295 

Wired telecom (Class 5) $71 $400 $80 $452 

Armored car (Class 6) $82 $459 $98 $550 

Yard tractors ( Class 7) $71 $399 $91 $513 

Sum $320 $1,803 $382 $2,150 

 

Result 8: Aggregated New Jersey impacts 
Figure 15 shows our estimated aggregated infrastructure costs if all class 3-7 registered trucks 

in New Jersey were electrified. Results are presented in aggregate for each rate in terms of 

annual cost, which includes amortized capital and electricity costs. Note there are no utility grid 

buildout costs (or cost savings) included in this cost estimate. One sees that, like the per-vehicle 

costs, managed charging is lowest for each rate, managed charging with solar is next highest, 

and unmanaged charging highest. Table 14 shows the breakdown by vehicle class. 

 

Figure 15 

New Jersey charging infrastructure total cost of ownership for all vehicle classes 

combined 
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Table 14 

New Jersey total cost of ownership by vehicle class, optimization, and rate structure 

  New Jersey TCO ($M/yr.) by vehicle class 

Rate 

structure 

Optimization 

type 3 4 5 6 7 

1 Unmanaged $1,217 $1,109 $1,533 $1,661 $1,293 

1 Managed $425 $422 $464 $526 $455 

1 Mgd. w/ solar $559 $640 $927 $994 $495 

Rate 

structure 

Optimization 

type 3 4 5 6 7 

2 Unmanaged $593 $631 $686 $839 $585 

2 Managed $258 $254 $274 $309 $247 

2 Mgd. w/ solar $419 $518 $820 $864 $379 

Rate 

structure 

Optimization 

type 3 4 5 6 7 

3 Unmanaged $924 $939 $1,152 $1,404 $1,041 

3 Managed $315 $337 $418 $465 $326 

3 Mgd. w/ solar $459 $570 $900 $962 $407 

Rate Optimization 3 4 5 6 7 
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structure type 

4 Unmanaged $689 $779 $921 $1,135 $729 

4 Managed $277 $300 $333 $384 $291 

4 Mgd. w/ solar $433 $544 $847 $902 $396 

 

Including infrastructure savings in total cost of ownership 

While the results above indicate once again that managed charging is cheaper overall than 

when solar + battery infrastructure are included, the picture begins to change at the state level 

when infrastructure savings are included. While not true for most vehicle classes, the net 

incremental New Jersey-wide cost of adding solar + battery to managed charging approaches 

breakeven (<7% cost increment) for vehicle class 7 for the PSEG RTP rate, due to the high 

overall cost of electricity, and the high utilization and relatively modest capital costs of charging 

infrastructure for this vehicle class (this is also discussed in the GNA report). For other rate 

structures and vehicle classes, the cost differential is still very high. See Figure 16. However, 

grid costs in the future may be more expensive, which could improve the case for solar + battery 

which reduces grid upgrade and generation costs. This also does not consider the other 

revenue opportunities what onsite solar and battery could be exploiting through grid services. 

 

Figure 16 

New Jersey infrastructure cost increment from adding solar + battery, with infrastructure 

savings included 

 

http://blogs.edf.org/energyexchange/files/2021/03/EDF-GNA-Final-March-2021.pdf
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Conclusions 

This study modeled the electrification of medium- and heavy-duty vehicles (MHDVs) in New 

Jersey using realistic case studies representing different vehicle classes 3 through 7. Two types 

of vehicle charging approaches were compared: unmanaged charging (when vehicles charge at 

full power as soon as trucks return to the depot) and managed charging (when fleets optimize 

their charging times and charging power to reduce the cost of charging). Scenarios with a solar 

photovoltaic (PV) + battery system at the depot were also modeled. 

 

Study objectives were to determine depot electrification readiness by vehicle class, total cost of 

ownership and cost savings for depots under various assumptions, the impact of managed 

charging (both with and without solar + battery) on total charging infrastructure costs, and the 

avoided costs and other impacts to grid operators. 

 

Firstly, we showed that using real fleet driving data of five representative MHDV fleets (classes 

3-7), we were able to determine that using existing electric truck technology, all fleets were able 

to use electric trucks for over 80% of their needed routes on a single charge without having to 

change driving behavior  and up to 98% if 2 to 3 charging sessions were incorporated into 

operations.. This would mean that these challenging fleets are able to meet NESCAUM and 

ACT electrification goals. 

 

A large percentage of failed trips, or trips which could not be completed using existing battery 

technology, could easily be managed with enroute charging or modifying operations to allow for 

multiple charging sessions as the dwell time available was more than sufficient to meet charging 

needs. This would mean that installing shared charging at common stops, could enable more 

trucks to electrify and benefit electrification overall for this truck class.  

 

Cost of charging infrastructure is still a major barrier for fleets in New Jersey, where the 

charging cost per vehicle ranges from $50k to $125k  depending on the charging management 

and scenario. Up to 32% of these costs are attributed to make-ready, which shows a clear 

policy opportunity to reduce barriers and accelerate electrification of medium duty trucks in New 

Jersey. Programs that reduce make-ready costs would have the highest benefit to small fleets. 

  

Rates in New Jersey are not tuned to accommodate MHDV electrification, with most having 

fixed demand charges that are non-coincidental to system peak. The demand charge (defined 

as the sum of capacity, generation, transmission, distribution, and delivery charges, where 

applicable, that scaled with power, e.g., $/kW) portion of the bill for each fleet, when 

unmanaged, was seen to be 58-94% of the cost (depending on rate structure). Approaches to 

minimize demand charges by distributing load across more hours of the day, rates designed to 

reduce the magnitude of demand charges on a $/kW basis, as well as short-term special rates 

as New Jersey transitions to electric vehicle charging, would all help reduce electricity costs. 

 

The impact of managed charging for fleets lead to significant cost savings. These savings 

resulted in $66,739 lower capital costs (NPV per vehicle) for charging equipment, and between 
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$15,836 (AC RTP rate) and $83,500 (PSEG RTP rate) lower electricity costs (NPV per vehicle), 

mainly due to reduced demand charges. Therefore, states and utilities should be exploring 

fleets as part of their overall electrification plan. 

 

When solar PV + battery is added to the charging infrastructure, there is a further savings in 

electricity cost, but this is more than offset by higher capital costs of the additional hardware. As 

fleet sizes increase, the utilization of charging infrastructure tends to become more efficient, 

leading to larger savings and an increased offset in capital costs. It is clear that financial support 

is needed to scale onsite solar and battery at depot sites. Given the high capital costs, breaking 

even in savings and additional hardware costs seems most viable with class 7-8 fleets or those 

with constrained operating cycles and higher power charging needs. Further work is needed to 

explore what is required to reach grid cost parity, including finding other sources of revenue for 

solar/battery such as demand response, spinning reserves, frequency regulation, and other grid 

services. 

 

For all fleets, there was significant annual fuel cost savings from charging compared to 

gasoline/diesel vehicles, up to $50k (depending on vehicle class), but only in the case of 

managed charging. While this was excluding the cost of charging infrastructure, it does show 

there is a clear pathway to fuel cost savings for electrification of trucks once infrastructure 

installation costs are covered. There is a need for programs that encourage managed charging 

by helping to educate users, and providing technology to implement it. 

 

When including the cost of charging, there was only savings for wired telecom of <$10k. It is 

clear that without financial support for fleet infrastructure, these additional costs make it difficult 

to break even for most use cases, and make a clear case for programs to reduce costs. This 

was particularly true for smaller fleets of less than 15 trucks. It was shown that as fleet sizes 

increase, and utilization of charging increased, fuel cost savings could be seen, making a clear 

case for focusing funding for small fleets and early adopters. In the short term, there is a need to 

support infrastructure to achieve cost parity, with a special focus on smaller fleets. Our studies 

showed that 8-15 vehicles were more likely to achieve cost parity, though this may change 

depending on operational characteristics. This clearly indicated that smaller fleets required 

additional support to overcome these barriers. 

 

Further, when scaling the impact of managed charging and solar + battery New Jersey-wide, 

avoided peak load ranged from ~8,400 MW for managed charging to ~10,000 MW for managed 

charging with solar + battery. This could lead to potential avoided cost savings for the utility of 

between $320M and $1,803M for managed charging, and between $382M and $2,150M for 

managed charging with solar + battery. Significant savings will accrue to utilities implementing 

managed charging, as well as solar + battery, and managed charging will also benefit fleets, 

making this a win-win solution. Effort should be made to explore how solar + battery can be a 

win-win solution for fleets as well.
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Appendix A: Data 

Data sources 

Emerging Futures utilized several data sources in putting together input data for this analysis. 

We divide sources into vehicle use data, electricity rate data, hardware cost data, and other 

data. Each is described in more detail below. 

Vehicle use data 

Two data sources were used to provide vehicle use data: 

ARI 

ARI, a Holman Enterprises company established in 1924 and located in Mount Laurel, NJ, 

manages 1.9 million fleet vehicles in Canada, United States, Mexico, the United Kingdom, and 

Germany. ARI provided vehicle use data for this analysis. 

Dependable Highway Express (DHE) 

DHE is a full-service logistics provider established in 1950 and headquartered in Los Angeles, 

CA. It operates a fleet of vehicles in California, for which use data were shared with Emerging 

Futures. 

Electricity rate data 

We used four sources of data to provide the electricity rate structures used in our simulations: 

Atlantic City Electric Company 

Located in Mays Landing, NJ, Atlantic City Electric Company delivers electric service to 560,000 

customers in southern New Jersey. It was first incorporated in 1924 and is now a subsidiary of 

Exelon Corporation. Emerging Futures used Atlantic City Electric’s tariff information dated July 

1, 2021 to provide rate structure information for our Rate 3. 

PJM 

PJM is a regional transmission organization (RTO) that coordinates the movement of wholesale 

electricity in all or parts of 13 states (including New Jersey) and the District of Columbia. PJM 

publishes hourly real-time, day-ahead electricity prices through a public portal. Emerging 

Futures used this data as the basis for estimating real-time pricing for our Rates 1 and 2. 

Public Service Enterprise Group (PSEG) 

PSEG is a diversified energy company established in 1903 and headquartered in Newark, NJ. 

An important subsidiary of PSEG is the Public Service Electric and Gas Co. (PSE&G), which 

provides electricity to 2.3 million customers and natural gas to 1.9 million customers—the 

https://www.arifleet.com/
https://www.godependable.com/
https://www.atlanticcityelectric.com/Pages/default.aspx
https://www.exeloncorp.com/
https://www.atlanticcityelectric.com/Documents/NJ%20Tariff%20Section%20IV%20Eff.%2007.01.21.pdf
https://www.pjm.com/
https://dataminer2.pjm.com/feed/da_hrl_lmps
https://nj.pseg.com/
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largest in New Jersey. PSEG tariff sheet data issued October 30, 2018 were used to provide 

rate structure information for our Rates 1 and 2. 

Rockland Electric Company (RECO) 

RECO is a wholly owned subsidiary of Orange and Rockland Utilities, Inc. (Orange & Rockland), 

which is located in the northwestern suburbs of New York City, and provides electricity and gas 

service to more than 300,000 households and businesses in six counties in New York and 

northern New Jersey. Founded as the Rockland Light & Power Co. in Nyack, NY in 1899, it 

became Orange & Rockland in 1958 when Rockland Light & Power merged with Orange and 

Rockland Electric Company. Orange & Rockland became wholly owned by Consolidated 

Edison, Inc. (ConEd) in 1999. 

 

RECO rate case filing data, along with additional information on time-of-use rates, were used to 

provide rate structure information for our Rate 4. 

Hardware cost data 

Several sources provided us with hardware costs needed to estimate total cost of ownership: 

ABB 

ABB is a leading global technology company focused on providing software for “electrification, 

robotics, automation and motion.” ABB was created in 1988 by the merger of two older 

companies, Allmänna Svenska Elektriska Aktiebolaget (ASEA) established in 1890 in Sweden, 

and Brown, Boveri & Cie (BBC) established in 1891 in Switzerland. ASEA itself was formed 

from the merger of two smaller Swedish companies established in the 1880s. Both ABB and 

ASEA were involved in the early years of electricity production. ABB currently employs more 

than 100,000 people in over 100 countries. 

 

Steve Bloch, the Western Regional Vice President for E-mobility at ABB, provided guidelines on 

“make ready” costs to connect a greenfield site to a utility as a function of kW DC fast charger 

capacity in kW. Bloch noted that there is a lot of variation based on what the utility is willing to 

provide, so the numbers provided represented rough averages. 

International Council on Clean Transportation (ICCT) 

The ICCT is a nonprofit organization founded in 2011 to provide high-quality unbiased research, 

and technical and scientific analysis, to environmental regulators, with a focus on environmental 

performance and energy efficiency of transportation. A 2019 ICCT paper (Michael Nichols, 

“Estimating electric vehicle charging infrastructure costs across major U.S. metropolitan areas,” 

Working Paper 2019-14, August, download here), was used to provide Level 3 (DC fast) 

charger capital and installation costs. 

https://nj.pseg.com/aboutpseg/regulatorypage/-/media/BDB4BFCD9DAB4D2D8863FAD5243D5879.ashx
https://www.oru.com/en/about-us/company-information
https://www.oru.com/_external/orurates/documents/nj/RECO-2021-Rate-Case-Filing-Complete.pdf
https://www.oru.com/en/save-money/energy-saving-programs/time-of-use
https://global.abb/group/en/about
https://theicct.org/mission-history
https://theicct.org/sites/default/files/publications/ICCT_EV_Charging_Cost_20190813.pdf
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Rocky Mountain Institute (RMI) 

RMI is an independent nonprofit founded in 1982 that is focused on transforming the way 

energy is produced and used globally, to create a clean, prosperous, and secure low-carbon 

future. It engages businesses, communities, institutions, and entrepreneurs to accelerate the 

adoption of market-based solutions that cost-effectively shift from fossil fuels to efficiency and 

renewables. RMI is headquartered in Boulder, CO with four additional U.S. offices as well as an 

office in Beijing, China. 

 

We used the 2020 RMI EV report (Chris Nelder and Emily Rogers, Reducing EV Charging 

Infrastructure Costs, download here) to provide estimates of Level 3 charger capital costs, data 

and network contract costs, charger cable costs, warranty costs, and consumer and utility 

make-ready costs. 

Smart Charge America 

Smart Charge America has been installing electric car charging stations for homes, workplaces, 

and retail locations since 2007. We used their online marketplace to estimate costs of Level 3 

charging stations. 

Other data 

Atlas Public Policy 

Atlas Public Policy works in the areas of transportation and building electrification, climate 

policy, and disinformation tracking. According to its website, Atlas “equips businesses and 

policymakers to make strategic, informed decisions that serve the public interest. Atlas builds 

analytical tools and dashboards using powerful, accessible technology, and offers expert 

advisory services to tackle the pressing issues of the day.” 

 

Atlas furnished Emerging Futures with Class 3-8 truck registrations in 2019 in New Jersey, 

which was used to scale our simulation results to New Jersey. 

ChargEVC/Gabel Associates 

According to its website, ChargEVC.org is a not-for-profit trade and research organization 

comprised of a community of stakeholders to promote EV use in New Jersey and Pennsylvania. 

ChargEVC-NJ is managed by Gabel Associates, a trusted energy consulting firm located in New 

Jersey that has been providing economic, policy, and regulatory support for over 25 years. 

ChargEVC published the report, Full Market Vehicle Electrification in New Jersey: The 

Opportunities, Impacts, and Net Benefits For Light-, Medium-, and Heavy-Duty Electric 

Vehicles, in October 2020. 

Energy Information Administration (EIA) 

The EIA is an independent U.S. government agency physically located within the U.S. 

Department of Energy (DOE) and is charged with collecting, analyzing and disseminating 

https://rmi.org/our-work/
https://rmi.org/wp-content/uploads/2020/01/RMI-EV-Charging-Infrastructure-Costs.pdf
https://smartchargeamerica.com/
https://smartchargeamerica.com/electric-car-chargers/
https://atlaspolicy.com/
http://chargevc.org/
http://gabelassociates.com/
http://www.chargevc.org/wp-content/uploads/2020/10/ChargEVC-Full-Market-Electrification-Study-FINAL-Oct-7-2020.pdf
http://www.chargevc.org/wp-content/uploads/2020/10/ChargEVC-Full-Market-Electrification-Study-FINAL-Oct-7-2020.pdf
http://www.chargevc.org/wp-content/uploads/2020/10/ChargEVC-Full-Market-Electrification-Study-FINAL-Oct-7-2020.pdf
https://www.eia.gov/
https://www.energy.gov/
https://www.energy.gov/
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unbiased energy information, and is considered an authoritative source by many in the energy 

industry. A table of conversion factors were used to calculate the heat content of gasoline and 

diesel fuel. 

FuelEconomy.gov 

FuelEconomy.gov is the U.S. government’s official source for fuel economy information that is 

jointly operated by the DOE and the U.S. Environmental Protection Agency (EPA). Webpages 

on the energy efficiencies of gasoline and all-electric vehicles were used to provide conversion 

estimates from gasoline to electrical engine efficiencies, while information from ICCT was used 

to provide additional data to estimate the conversion from diesel to electrical engine efficiency. 

Geotab 

Geotab, Inc. was established in 2000, and has grown from a small, family business to a global 

leader in solutions for fleet management and vehicle tracking. It provides web-based analytics to 

help customers better manage their fleets. Geotab is headquartered in Ontario, Canada, with 

offices across the world, including its U.S. location in Las Vegas, NM. Geotab provided data on 

the relationship between electric vehicle driving range versus ambient temperature, due to 

heating and cooling loads, respectively, during cold and hot weather. Geotab was also used to 

provide estimated fuel efficiency of class 7 and 8 trucks in New Jersey. 

Gladstein, Neandross & Associates (GNA) 

GNA is a clean transportation and energy consultancy founded in 1993. GNA published a report 

for EDF in March 2021 called California Heavy-Duty Fleet Electrification: Summary Report. The 

report focused on electric vehicle simulations for class 7 and 8 trucks. Some of the parameters 

in this report, detailed below, were used for the current study. 

ICCT 

ICCT (described above) provided estimates of the loss in driving range of battery electric 

tractor-trailer as a function of temperature in their 2019 paper (Ben Sharpe, “Zero-emission 

tractor-trailers in Canada,” Working Paper 2019-04, March, download link). This along with data 

from Geotab was used to estimate additional energy consumption from electric vehicles as a 

function of season. 

 

A webpage on diesel engine efficiency was used to provide conversion estimates from diesel to 

electrical efficiency. 

National Renewable Energy Laboratory (NREL) 

NREL, located in Golden, CO, has developed solutions to transform the way the U.S. 

generates, consumes, stores, and distributes energy for more than 40 years. Its PVWatts 

energy estimation tool was used to provide estimated solar photovoltaic (PV) output for a 

generic location in northern New Jersey. 

https://www.eia.gov/totalenergy/data/monthly/pdf/sec12_2.pdf
https://www.fueleconomy.gov/
https://www.epa.gov/
https://www.fueleconomy.gov/feg/atv.shtml
https://www.fueleconomy.gov/feg/atv-ev.shtml
https://www.geotab.com/about/
https://www.geotab.com/blog/ev-range/
https://www.geotab.com/truck-mpg-benchmark/
https://www.gladstein.org/
http://blogs.edf.org/energyexchange/files/2021/03/EDF-GNA-Final-March-2021.pdf
http://blogs.edf.org/energyexchange/files/2021/03/EDF-GNA-Final-March-2021.pdf
https://theicct.org/sites/default/files/publications/ZETractorTrailers%20Working%20Paper042019.pdf
https://theicct.org/blogs/staff/ever-improving-efficiency-diesel-engine
https://www.nrel.gov/
https://developer.nrel.gov/docs/solar/pvwatts/v6/
https://developer.nrel.gov/docs/solar/pvwatts/v6/
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Snohomish County Public Utility District (SNOPUD) 

SNOPUD published an up-to-date list of electric truck models including battery capacities for 

classes 1-8. We used this information to determine the maximum battery capacity for each 

vehicle class 3-6 for our simulations. (Class 7 battery capacities were already available from the 

data provider.) 

U.S. Climate Data 

U.S. Climate Data is a data aggregation site meant to inform people about the climate in the 

United States. Data originates from a variety of sources, such as The National Climatic Data 

Center at the National Oceanic and Atmospheric Administration (NOAA), but data are not 

guaranteed to be accurate. For this reason, we also consulted another data source, World 

Climate, described below. Data for New Jersey were gathered by month. 

World Climate 

World Climate is a data aggregation site that gathers worldwide climate data in one place in an 

easy-to-use format, using a variety of public sources. Like U.S. Climate Data above, data are 

not guaranteed accurate. Data for New Jersey were gathered by month. 

Data preparation 

Gasoline and diesel vehicle data 

A data provider gave Emerging Futures access to refueling event data for commercial vehicles 

with operations in New Jersey and New York over a period from May 2020 through April 2021. 

A raw total of 171,475 New Jersey and 247,981 New York transactions were provided, spanning 

almost 100 different business types across vehicle classes 3-6. 

Initial screening 

An important goal of the project was to identify business types that were well-represented in the 

data, with a target of identifying 4-5 distinct business types. An initial screening identified 26 

business types, each with >2,000 raw entries in New Jersey and/or New York. See Table A1 

and Table A2. 

 

Table A1 

Initial count of New Jersey business types with >2,000 raw entries 

 Raw counts by class   

Business type 3 4 5 6 Total 

Fraction of 

total 

ARMORED CAR 

SERVICES 6 5,832 2,977 1,905 10,720 6.25% 

CONSTR/MINING 

EQUIP. 411 26 5,853 956 7,246 4.23% 

https://www.snopud.com/
https://www.snopud.com/?p=3858
https://www.usclimatedata.com/website-info
https://www.noaa.gov/
https://www.usclimatedata.com/climate/new-jersey/united-states/3200
http://www.worldclimate.com/about.htm
http://www.worldclimate.com/sources.htm
http://www.worldclimate.com/climate/us/new-jersey
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ELECTR/PLUMB/WHO

LSLRS 26 0 1,871 2,950 4,847 2.83% 

ENGINEERING 

SERVICES 3,004 0 0 2 3,006 1.75% 

EQUIPMENT RENTALS 995 585 3,754 114 5,448 3.18% 

FOOD SERVICE 

CONTRACT. 0 958 1,052 54 2,064 1.20% 

FOOD VENDOR 78 2,199 172 292 2,741 1.60% 

LANDSCAPING 

SERVICES 3,323 40,187 5,723 3,755 52,988 30.90% 

MEMBERSHIP 

ORGANIZATIO 9,380 0 684 732 10,796 6.30% 

MUNICIPAL 

GOVERNMENT 1,705 24 300 10 2,039 1.19% 

TELECOMMUNICATIO

NS 1,925 98 4,945 0 6,968 4.06% 

TRANSPORTATION 

SERVICE 862 335 639 497 2,333 1.36% 

WASTE MGMT 

SERVICES 319 540 1,498 421 2,778 1.62% 

WATER 3,591 155 37 770 4,553 2.66% 

WIRED 

TELECOMMUNICATIO

NS 403 1,895 13,795 44 16,137 9.41% 

Others 6,026 5,524 17,883 7,378 36,811 21.47% 

All 32,054 58,358 61,183 19,880 171,475 100.00% 

 

Table A2 

Initial count of New York business types with >2,000 raw entries 

 Raw counts by class   

Business type 3 4 5 6 Total 

Fraction of 

total 

ARMORED CAR 

SERVICES 2 8,978 3,702 6,693 19,375 7.81% 

CABLE TV SYSTEMS 1,015 961 37,080 526 39,582 15.96% 

ELECTR/PLUMB/WHO

LSLRS 0 1 840 1,705 2,546 1.03% 

EQUIPMENT RENTALS 404 1,476 4,764 365 7,009 2.83% 

FOOD VENDOR 209 4,404 824 103 5,540 2.23% 
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FUEL OIL & LP GAS 1,594 206 7,279 6 9,085 3.66% 

LANDSCAPING 

SERVICES 5,034 28,876 8,137 1,028 43,075 17.37% 

LINE-HAUL 

RAILROADS 2,622 0 1,204 71 3,897 1.57% 

LIQUEFIED 

PETROLEUM 90 0 3,707 2 3,799 1.53% 

MACHINERY MFG 1,673 0 91 889 2,653 1.07% 

MFG SANDWICHES 0 5,919 2,064 0 7,983 3.22% 

NATURAL GAS 

DISTRIBUT 2,959 289 3,803 7,217 14,268 5.75% 

RELIGIOUS 

ORGANIZATION 13 0 5,765 383 6,161 2.48% 

STATE GOVERNMENT 14,796 754 10,625 503 26,678 10.76% 

TELECOMMUNICATIO

NS 2,187 178 6,496 362 9,223 3.72% 

TRANSIT SYSTEM 5,625 3,573 44 1 9,243 3.73% 

WASTE MGMT 

SERVICES 1,063 827 455 180 2,525 1.02% 

WHOL INDUSTRIAL 

EQUIP 208 0 2,372 1,453 4,033 1.63% 

Others 7,826 5,787 13,105 4,588 31,306 12.62% 

All 47,320 62,229 112,357 26,075 247,981 100.00% 

 

From this initial list, further consultation with the data provider narrowed the list of eligible 

business types to five, governed mainly by the ability of the data provider to gather ancillary 

data such as operating hours, depot locations, etc. The final list of business types used is 

shown in Table A3. 

 

Table A3 

Final raw count of data entries by business type used 

Business type New Jersey New York Both 

ARMORED CAR SERVICES 10,720 19,375 30,095 

FOOD SERVICE CONTRACT. 2,064 0 2,064 

FOOD VENDOR 2,741 5,540 8,281 

LANDSCAPING SERVICES 52,988 43,075 96,063 

WIRED 

TELECOMMUNICATIONS 16,137 0 16,137 
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Total 84,650 67,990 152,640 

Initial data review 

 

An initial data review was performed on a data sample in order to determine how the entire data 

set could be used in more in-depth analyses. While there were 28 fields included in the raw data, 

the fields that were most applicable to the project were the following: 

● Vehicle Number (unique ID) 

● Transaction Date and Time 

● Vehicle Current Odometer (miles) — not used in analysis 

● Amount of Transaction ($) — not used in analysis 

● WEX Odometer (miles) 

● Gallons (of fuel purchased) 

● Product Name (type of fuel purchased) 

● Gvwr (gross vehicle weight class) 

● Business Type 

Other fields were not used in the analysis as the vehicles used were similar in manufacture and 

were performing similar operational functions. 

  

The intended use of the data was to estimate daily miles traveled by a group of vehicles used 

for a specific business activity. As a result, the focus was on understanding the validity of 

odometer readings. As a secondary goal, the gallons of fuel purchased was to be used to 

estimate, along with a valid odometer increment between adjacent refueling events, the average 

fuel efficiency of a particular vehicle. 

  

Several findings were discovered during the initial data review: 

  

1. Initially, there seemed to be duplicate transactions but were later found to be discounts 

or non-fuel related transactions. 

2. The Vehicle Current Odometer field contained the latest odometer reading as of the date 

the data was prepared. This meant that Vehicle Current Odometer was not useful to the 

analysis. 

3. The WEX Odometer field was generally useful, and as described by the data provider, 

was a manually entered odometer reading at the time of the refueling event. However, it 

did not always appear to be increasing in value with time. For example, the reading for a 

transaction date was sometimes lower than the reading on the previous date, which 

indicated an error in data entry. Also, “123456” was a common entry, indicating an error 

in data entry. 

4. The Product Name (type of fuel purchased) sometimes listed multiple products for the 

same vehicle in adjacent transactions. This suggested that some vehicles were using 

both diesel and gasoline. Since this is generally not possible in most vehicle engines, 

this indicated that some fuel was being purchased for other consumption (e.g., lawn 

mower). 

  



  58 

The project team elected to perform a two-stage cleaning process to highlight the WEX 

Odometer errors described in (3), and to follow that process with a second round of cleaning. 

The pre-cleaning process is described below. 

  

First stage data cleaning process 

 

First, the data’s Transaction Date and Time parameter was modified. The time stamps 

associated with this parameter were not organized sequentially, due to the data format being a 

character string. A simple conversion from the character string format to the date format was 

performed. As a result, the WEX Odometer readings were ordered sequentially for each Vehicle 

Number. This step was important to accomplish, as the subsequent step filters the data based 

on the WEX Odometer readings for each Vehicle Number. 

 

Filtering the data involved removing outliers from the WEX Odometer readings and analyzing 

whether the data trends exceeded a goodness-of-fit threshold and contained at least a minimum 

number of data points, for each Vehicle Number. The outliers were removed by performing a 

boxplot analysis of the WEX Odometer readings for each Vehicle Number, then removing any 

values outside of interquartile range. Three combinations of a goodness-of-fit threshold and a 

minimum number of data points were then tried: A minimum R2 and a minimum number of data 

points of (1) 0.90 and 50, (2) 0.97 and 25, and (3) 0.98 and 10, respectively. 

 

Once this was performed, the data was finally filtered so that the trends were monotonically 

increasing with the WEX Odometer readings, while removing the least amount of data and 

maximizing the increase in R2. 

 

Last, all remaining trends were analyzed by eye, and few trends were further removed as they 

were deemed insufficient for further, feasible use. 

Second stage data cleaning process 

The initial, pre-cleaned vehicle data file was received. Using the cleaning process described 

below, we were able to produce a set of daily miles traveled and gallons consumed by vehicle 

while eliminating unusable, or suspect data. 

 

Two data files, pre-cleaned in R, were imported into Microsoft Excel, separately: 

● Vehicle_data_sample_ordered_filtered_combined_NY 

● Vehicle_data_sample_ordered_filtered_combined_NJ 

  

In Excel Power Query, the data was transformed by copying and converting the 

transaction.date.time into transactiondateNUM, a new field that would allow mathematical 

operations on the date. 

  

The WEX Odometer values were filtered to remove ‘NA’ values, which were entries defined as 

data entry errors. Any remaining non-increasing WEX values not labeled as ‘NA’ were to be 

removed in the final steps. They were kept in the data to maximize the number of data values 

available. 
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All non-fuel transactions (e.g., Product = “OTHER”) were filtered out and the data was sorted by 

Vehicle Number, Transaction Date. 

 

Columns not needed for the analysis were removed, leaving only the applicable columns: Index, 

Vehicle.number, Transaction.date.and.time, transactiondateNUM, Vehicle.Current.Odometer 

WEX.Odometer, Amount, Gallons, Cumulative Gallons, Product.Code, Product.Name, 

Business.Type 

  

The Vehicle Class was added back later, during a final step. 

  

After the initial filtering was complete, the data was exported to an Excel table. Calculated columns 

were inserted for the following purposes: 

● Check for change in vehicle. This indicated when one vehicle’s data ended in the list, 

and another’s began. 

● Check for same day transactions. This was necessary to later ensure that the last 

transaction of the day was used in capturing the WEX Odometer reading and to ensure 

that the calculation of “days since last fuel transaction” would be calculated correctly. 

● Reference a single WEX Odometer reading for each transaction date. This was required 

when there was more than one fuel transaction on a single date. 

● Calculate number of days since last fuel transaction. This was necessary to determine 

the daily rate of fuel use and miles driven. 

● Calculate difference in WEX Odometer reading since previous transaction date. 

● Calculate number of gallons since last transaction. 

● Calculate the Average WEX Odometer Miles per day (difference in amount of 

miles/difference in dates) 

● Calculate the Average Gallons per day (difference in cumulative gallons/difference in 

dates) 

  

In the final step of cleaning, data was filtered to remove: 

● All first day transactions. These are dates for which there is no previous transaction data 

to compare to, meaning the calculation of difference in gallons and difference in miles 

could not be performed. 

● Remaining rows for which WEX Odometer readings were not increasing values. As 

noted previously, this would be completed in the final stage. 

  

The vehicle class field was added back to the data. The files were formatted according to the 

class (Armored Car, Food Vendor, etc.) and exported to csv. 

Figure A1 and Figure A2 illustrate a typical vehicle’s gallons and WEX Odometer mile profile 

after cleaning. Note that there are gaps in the data, removed during the cleaning processes, or 

not available in the original data set. 

 

Figure A1 

Vehicle 14S023 Cumulative Gallons by date 
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Figure A2 

Vehicle 14S023 WEX Odometer reading by date

 
 

  

In total, 33,987 processed data points, or 22.3% of the initial raw data sample, were obtained. 

The percentage of raw data by business type varied between 10.3% (Armored car services) and 

64.0% (Wired telecommunications). See Table A4. 

 

Table A4 

Final processed data counts by business type and class 

 Processed data by class:   

Business type 3 4 5 6 Total 

Fraction of 

raw 

ARMORED CAR 

SERVICES 0 2,262 608 232 3,102 10.31% 
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FOOD SERVICE 

CONTRACT. 0 502 363 3 868 42.05% 

FOOD VENDOR 85 2,966 182 157 3,390 40.94% 

LANDSCAPING 

SERVICES 1,086 12,237 2,458 524 16,305 16.97% 

WIRED 

TELECOMMUNICATI

ONS 231 958 9,106 27 10,322 63.96% 

Total 1,402 18,925 12,717 943 33,987 22.27% 

 

The range of dates over which the data were available was generally from the beginning of May 

2020 to the end of April 2021, with the exception of Armored car services, which were only 

available from December 2, 2020 to May 1, 2021. 

Electric yard tractor data 

We obtained high-resolution (≤15 min. interval) charging data for yard trucks between 

December 6, 2019 through June 30, 2021. Since vehicles were already electric, no conversions 

from equivalent fuel energy use were required. 

 

A total of 7,292 yard truck charging cycles (sum of two vehicles) were available over these time 

periods. Thus, each yard truck experienced an average of 6.4 cycles/day. 

Real-time pricing data 

PJM hourly day-ahead pricing data were available with locational marginal prices (LMPs) for 

more than 13,000 nodes. In order to simplify our analysis, we downloaded data from all nodes 

for a two-day mid-week period (August 4-5, 2020) and calculated the average LMP for each 

hour across the entire region. We then compared each node’s hourly LMP to the hourly average 

and calculated sums of squared differences to find the node with the lowest value, which would 

come closest to being “representative” for the entire region. This node was determined to be 

Hadley (pnode_id: 1183223784). An entire year’s worth of day-ahead real-time hourly price data 

for Hadley node was then downloaded for August 5, 2020 to August 4, 2021. This dataset was 

used to provide our estimated day-ahead real-time prices, including LMP, in our analysis for 

Rates 1 and 2. 

Look-ahead time period 

Day-ahead RTPs are settled in the PJM market by 2:45 pm the day before the rates take effect. 

As a result, our model performed simulations in 24-hour time intervals starting at 3 pm and 

continuing until 2:45 pm the next day. This allowed us to simulate the optimization approach as 

closely as possible to how it might be implemented in the real world. 
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This starting time was actually convenient to the modeling, as all of the class 3-6 vehicles were 

assumed to be driving and unavailable to charge at this time; the earliest vehicle type to return 

to the depot for charging was Food service (class 4), which returns at 4:30 pm. For yard tractors 

(class 7), which operate around the clock, this starting time was expected to have little impact 

on the optimization, as some vehicles will always be driving while others will be available to 

charge. 

Vehicle characteristics 

Vehicle classes 

An important goal of the project was to represent a range of vehicle classes in the simulations. 

While the vehicle class 7 data was for a single use case (yard trucks), classes 3-6 each 

contained many vehicle use cases (“business type”). As a result, we made a determination of 

the most common vehicle class associated with each business type, and used only a portion of 

the full dataset assigned to that vehicle class in our analysis. Based on the breakdown of 

refueling transactions by business type and vehicle class, we were able to make a decision that 

spanned the full range of vehicle classes while including sufficient numbers of data points 

(>200) per representative business type for reasonably large sample sizes in the simulations. 

Data spanned the period between December 6, 2019 and June 30, 2021. See Table A5. 

 

Table A5 

Fraction of clean transactions by business type and vehicle class 

 Processed data by class:    

Business 

type 3 4 5 6 Total Class used 

Data points 

used 

ARMORED 

CAR 

SERVICES 0.00% 72.92% 19.60% 7.48% 100.00% 6 232 

FOOD 

SERVICE 

CONTRAC

T. + FOOD 

VENDOR 

(combined) 2.00% 81.45% 12.80% 3.76% 100.00% 4 3,468 

LANDSCAP

ING 

SERVICES 6.66% 75.05% 15.08% 3.21% 100.00% 3 1,086 

WIRED 

TELECOM

MUNICATI

ONS 2.24% 9.28% 88.22% 0.26% 100.00% 5 9,106 

Total 4.13% 55.68% 37.42% 2.77% 100.00%  13,892 
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Table A6 shows the number of unique vehicles represented by the clean transactions in each 

business type and vehicle class. When downselected to only a single vehicle class, the number 

of unique vehicles ranged from 13 (Armored car services) to 140 (Wired telecommunications). 

Overall, 35% of the total unique vehicles in the clean transaction data were retained in the final 

input dataset for the simulations. 

 

Table A6 

Number of unique vehicles in clean transactions by business type and vehicle class 

Business 

type 3 4 5 6 Total Class used 

Data points 

used 

ARMORED 

CAR 

SERVICES 0 49 23 13 85 6 13 

FOOD 

SERVICE 

CONTRAC

T. + FOOD 

VENDOR 

(combined) 5 95 23 6 129 4 95 

LANDSCAP

ING 

SERVICES 40 324 53 16 433 3 40 

WIRED 

TELECOM

MUNICATI

ONS 8 25 140 1 174 5 140 

Total 53 493 239 36 821  288 

Depot size 

We worked with an industry stakeholder to obtain estimates of the depot size (number of 

vehicles) by vehicle class for individual vehicle depots in New Jersey. While in some cases such 

counts were not available individually by class, we obtained separate counts for classes 3-5 for 

all business types, classes 3-6 for Armored cars and Food service, and class 4 for Landscaping. 

We estimated the depot sizes for each business type as follows: 

● For Landscaping (class 3), we subtracted the class 4 depot sizes from classes 3-5 to 

obtain vehicle counts for classes 3 and 5 only. We then scaled this average depot size 

by the fraction of class 3 vehicles (43%) to obtain our estimate of 2.1 vehicles per depot, 

which we rounded to 2. 

● For Food service (class 4), we scaled the depot sizes for classes 3-6 by the fraction of 

class 4 vehicles (74%) to obtain our estimate of 3.9 vehicles per depot, which we 

rounded to 4. 
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● For Wired telecommunications (class 5), we estimated depot sizes for class 5 by scaling 

the depot sizes for classes 3-5 by the fraction of class 5 vehicles (81%) to obtain our 

estimate of 10.8 vehicles per depot, which we rounded to 11. 

● For Armored cars (class 6), we subtracted the classes 3-5 depot sizes from classes 3-6 

to obtain vehicle counts for class 6 only. We then used this information to obtain our 

estimate of 6.9 vehicles per depot, which we rounded to 7. 

 

For yard tractors (class 7), we used the actual depot size (2) associated with the data. 

Daily driving schedules 

The class 3-6 vehicle fleets operated on a regular weekly schedule that varied by business type, 

with four to six days of activity, and the balance of the week idle. Each active day, vehicles had 

daytime operations lasting between 12 and 14 hours, with the balance of the time spent idle at 

the depot, providing plenty of time for charging if converted to electricity. 

 

The yard tractor (class 7) fleet operated on a 24-hour, five days/week schedule, so vehicles 

were never idle for more than a few minutes at a time during the active part of the week. 

Between the two yard trucks, the median driving duration was between 82 and 99 min., and the 

median charging duration was between 17 and 29 min.Given the estimated number of daily 

charging cycles derived earlier, this implies an average charging times of 2.49 hrs./day for yard 

tractors during the active workweek. 

 

Table A7 summarizes this schedule information for all business types modeled. 

 

Table A7 

Daily driving schedules by business type 

Business type Vehicle class Days of week Days per week Hours 

No. of charging 

hours 

Landscaping 3 Mon-Thu 4 7 am - 6 pm 13 

Food service 4 Mon-Fri 5 5 am - 4:30 pm 12.5 

Wired telecom 5 Mon-Sat 6 6 am - 6 pm 12 

Armored car 6 Mon-Fri 5 7 am - 5 pm 14 

Yard tractors 7 Mon-Fri 5 24 hrs./day 2.49 

Daily travel ranges 

Analysis of daily mileages for each business type indicated skewed distributions with average 

values ranging between 63 and 80 miles/day, but with maximum mileages exceeding 200 miles 

in some cases. For an example, see Figure A3; all business types examined exhibited similarly-

shaped skewed distributions. 

 

Figure A3 
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Daily driving distances for New York Food Vendors, class 4 

 
 

In Table A8, the average daily miles traveled by business type (filtered on a single vehicle class) 

is shown separately for diesel and gasoline vehicles, as well as the weighted average.  

 

Table A8 

Average daily driving distances and fuel efficiencies by business type 

  Daily driving distance (mi/day) 

Business 

type 

Vehicle 

class Diesel Gasoline Combined 

Landscaping 3 54.0 79.6 78.3 

Food service 4 94.4 80.0 80.0 

Wired 

telecom 5 79.8 60.7 63.2 

Armored car 6 73.4 90.6 77.2 

Energy use estimates 

For class 3-6 vehicle data, we also needed to estimate average fuel efficiencies by business 

type/vehicle class, in order to convert average fuel consumption into an equivalent average 

electrical energy consumption. To do this, we began by examining distributions of fuel 
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efficiencies for each business type/vehicle class; an example in shown in Figure A4 below. 

Again, all business types examined exhibited similarly-shaped distributions. 

 

Figure A4 

Average gasoline fuel efficiency for New York Food Vendors, class 4 

 
 

Average diesel and gasoline fuel efficiencies by business type is shown in Table A9. We used 

standard values for the energy content of diesel and gasoline from FuelEconomy.gov and ICCT 

to convert each efficiency into an average energy efficiency, and then applied estimated diesel 

and gasoline engine efficiencies to convert to the equivalent electrical efficiency. 

 

Table A9 

Average energy efficiencies by energy type and business type 

  Average energy efficiency 

Business type Vehicle class Diesel (mi/gal) 

Gasoline 

(mi/gal) 

Equivalent 

electricity 

(kWh/mi) 

Landscaping 3 9.14 13.55 1.04 

Food service 4 11.88 12.12 1.11 

Wired telecom 5 8.76 7.35 1.93 

Armored car 6 5.85 5.18 3.36 

Yard tractors 7 6.05 N/A 3.50 
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Battery capacity estimates 

We used the maximum listed battery capacity on the market by vehicle class from SNOPUD. 

Table A10 summarizes these values, along with our calculated average daily electricity demand 

by class. We found that the ratio between the maximum and average battery capacity varied 

between 1.51 and 1.85 depending on vehicle class. 

 

Table A10 

Vehicle battery size by vehicle class 

Class 

Max. capacity 

(kWh) 

Average daily 

kWh Ratio 

3 140 82 1.72 

4 156 89 1.75 

5 226 122 1.85 

6 343 259 1.32 

Seasonal energy demand multipliers 

We compared average monthly temperatures for New Jersey from U.S. Climate Data and World 

Climate, which agreed almost exactly, and used their average to estimate energy correction 

factors for the months of January, April, July, and October. The energy correction factor used 

was from Geotab for January, and from ICCT for other months. Table A11 summarizes these 

results. The average annual energy demand multiplier of 1.115 was applied to the required solar 

battery and solar PV capacities to achieve the appropriate scalings. 

 

Table A11 

Energy correction factor by month 

Month 

Average 

temperature 

(°F) 

Driving range 

multiplier 

Energy demand 

multiplier 

January 31.5 0.7725 1.294 

April 53.0 0.914 1.094 

July 77.5 1.000 1.000 

October 56.5 0.934 1.071 

Average   1.115 

Rate structures 

A total of four rate structures were used for our analysis, summarized below. 

https://www.snopud.com/?p=3858
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Rate 1: PSEG service with real-time pricing (PSEG RTP) 

This rate was actually composed of two closely-related PSEG rates, which differed depending 

on the total peak power consumption. The General Lighting and Power (GLP) service (PSEG 

tariff sheet no. 129) is applicable for users with <150 kW peak power in all months, whereas the 

Large Power and Lighting service for secondary distribution voltages (LPL-Secondary) (PSEG 

tariff sheet no. 142) is applicable for users with ≥150 kW peak power in any month. Both rates 

are modified to include a RTP component that is added to the base cost per kWh; RTP data 

was provided by PJM (see Real-time pricing data section for details). For unmanaged charging, 

where the maximum depot power was ≥150 kW for vehicle classes 4-7, we used the LPL-S rate, 

and for vehicle class 3, where the maximum depot power was 100 kW, we used the GLP rate. 

For managed charging, although the maximum depot power was <150 kW in all cases, we used 

the GLP rate for vehicle classes 5 and 6 only, and the LPL-S rate for other vehicle classes 

(which tended to result in a lower electricity cost). See Table A12 and Table A13. 

 

Table A12 

Rate 1 details for <150 kW peak power (GLP) 

Parameter Value Units Time period Comments 

Service charge 4.91 $/mo. All  

Total energy charge - winter 0.027115 $/kWh Oct.-May 
plus real-time 
prices 

Total energy charge - summer 0.022071 $/kWh June-Sept. 
plus real-time 
prices 

Total demand charge - winter 26.06395 $/kW Oct.-May  

Total demand charge - summer on-
peak 31.07055 $/kW 

June-Sept., 8 
am to 8 pm 
Mon.-Fri.  

Total demand charge - summer off-
peak 14.67065 $/kW 

June-Sept., off-
peak  

 

Table A13 

Rate 1 details for ≥150 kW peak power (LPL-S) 

Parameter Value Units Time period Comments 

Service charge 370.81 $/mo. All  

Total energy charge 0.019559 $/kWh All 
plus real-time 
prices 

Total demand charge - winter and 
summer off-peak 23.11385 $/kW 

Oct.-May, and 
June-Sept. off-
peak  
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Total demand charge - summer on-
peak 27.6726 $/kW 

June-Sept., 8 
am to 10 pm, 
Mon.-Fri.  

 

Note that both rates include a partial “demand holiday” which is applicable in years 3+ of a new 

service contract. This is a 50% discount off the regular demand charge rate ($/kW). In years 1-

2, this discount is 75%, but we did not apply that larger discount here in order to capture longer-

term impacts. 

Rate 2: Atlantic City Monthly General Service with RTP (AC RTP) 

This rate is based on Atlantic City Electric’s Monthly General Service for secondary distribution 

voltages (MGS-Secondary) (Atlantic City tariff sheet 11). Like Rate 1 above, the rate is modified 

to include a RTP component (supplied by PJM) that is added to the base cost per kWh. See 

Table A14. 

 

Table A14 

Rate 2 details 

Parameter Value Units Time period Comments 

Total service charge 11.59 $/mo. All Three Phase 

Energy charge 0 $/kWh All 
plus real-time 
prices 

Total demand charge - first 3 kW - winter 0 $/kW Oct.-May 
Amount up to 3 
kW 

Total demand charge - first 3 kW - summer 0 $/kW June-Sept. 
Amount up to 3 
kW 

Total demand charge - amount over 3 kW - 
winter 3.83 $/kW Oct.-May 

Amount above 3 
kW 

Total demand charge - amount over 3 kW - 
summer 4.21 $/kW June-Sept. 

Amount above 3 
kW 

 

Note that, like Rate 1 above, there is an effective demand holiday owing to the very low cost per 

kW for peak power (and zero costs below 3 kW). 

Rate 3: PSEG time-of-use (PSEG TOU) Basic Generation Service - 

Residential Small Commercial Pricing (BGS-RSCP) 

This rate is based on PSE&G’s BGS-RSCP rate applicable to LPL-Secondary voltage 

distributions under 500 kW, which covers all simulated vehicle depots in this study. There is no 

RTP component, but there is an on- and off-peak price that varies monthly (note that no data 

were available for December 2021). See Table A15. 
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Table A15 

Rate 3 details 

Parameter Value Units Time period* Comments 

Total service charge 0 $/mo.   

Total energy charge - on-peak Jan. 0.057466 $/kWh Jan 2021 only  

Total energy charge - on-peak Feb. 0.055275 $/kWh Feb 2021 only  

Total energy charge - on-peak Mar. 0.048816 $/kWh Mar 2021 only  

Total energy charge - on-peak Apr. 0.0566317 $/kWh Apr 2021 only  

Total energy charge - on-peak May. 0.053361 $/kWh May 2021 only  

Total energy charge - on-peak Jun. 0.054837 $/kWh Jun 2021 only  

Total energy charge - on-peak Jul. 0.054837 $/kWh Jul 2021 only  

Total energy charge - on-peak Aug. 0.054837 $/kWh Aug 2021 only'  

Total energy charge - on-peak Sep. 0.043881 $/kWh Sept 2021 only  

Total energy charge - on-peak Oct. 0.043831 $/kWh Oct 2021 only  

Total energy charge - on-peak Nov. 0.043831 $/kWh Nov 2021 only  

Total energy charge - on-peak Dec. N/A $/kWh Dec 2021 only  

Total energy charge - off-peak Jan. 0.050391 $/kWh Jan 2021 only  

Total energy charge - off-peak Feb. 0.0482 $/kWh Feb 2021 only  

Total energy charge - off-peak Mar. 0.041741 $/kWh Mar 2021 only  

Total energy charge - off-peak Apr. 0.0495567 $/kWh Apr 2021 only  

Total energy charge - off-peak May. 0.046286 $/kWh May 2021 only  

Total energy charge - off-peak Jun. 0.042796 $/kWh Jun 2021 only  

Total energy charge - off-peak Jul. 0.042796 $/kWh Jul 2021 only  

Total energy charge - off-peak Aug. 0.042796 $/kWh Aug 2021 only'  
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Total energy charge - off-peak Sep. 0.03184 $/kWh Sept 2021 only  

Total energy charge - off-peak Oct. 0.036756 $/kWh Oct 2021 only  

Total energy charge - off-peak Nov. 0.036756 $/kWh Nov 2021 only  

Total energy charge - off-peak Dec. N/A $/kWh Dec 2021 only  

Total demand charge 18.3217 $/kW All 
Monthly 
peak 

*on- peak hours are 9am to 7pm weekdays 

Rate 4: Orange & Rockland time-of-use (O&R TOU) BGS-RSCP 

This rate was based on Orange & Rockland’s BGS-RSCP, time-of-use (TOU) rate applicable to 

service classification 2. As for Rate 3, there is no RTP component, but there is a more 

structured, five-tiered TOU structure. See Table A16. 

 

Table A16 

Rate 4 details 

 

Parameter Value Units Time period 

Total service charge 32 $/mo.  

Energy delivery charge - 
summer peak 0.32012 $/kWh 

June-Sept peak: 12pm-7pm, Mon-Fri, except 
holidays* 

Energy delivery charge - 
summer shoulder 0.1145 $/kWh 

June-Sept. Shoulder peak: 10am-12pm and 
7pm-9pm, Mon-Fri, except holidays* 

Energy delivery charge - 
summer off-peak 0.02061 $/kWh 

June-Sept. Off-peak: 9pm-10am, Mon-Fri, 
holidays* and weekends 

Energy delivery charge - 
winter peak 0.11454 $/kWh 

Oct-May peak: 10am-9pm, Mon-Fri, except 
holidays* 

Energy delivery charge - 
winter off-peak 0.02061 $/kWh 

Oct-May off-peak: 9pm-10am, Mon-Fri, 
holidays* and weekends 

Demand charge - first 5 kW, 
summer 1.69 $/kW June-Sept., first 5 kW 

Demand charge - amount over 
5 kW, summer 5.82 $/kW June-Sept., over 5 kW 

Demand charge - first 5 kW, 
winter 1.44 $/kW Oct.-May, first 5 kW 

Demand charge - amount over 
5 kW, winter 5.07 $/kW Oct.-May, over 5 kW 
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*Holidays are: New Year's Day, Memorial Day, Independence Day, Labor Day, Thanksgiving 

Day, and Christmas Day 

 

Also, like Rates 1 and 2 above, there is an effective demand holiday due to the very low cost 

per kW for peak power, and a lower cost below 5 kW. 

Solar PV generation 

Hourly data 

A year’s worth of hourly data from PVWatts was provided for Roxbury Township, New Jersey, at 

40.85°N, 74.66°W (northern central New Jersey). Table A17 lists the assumptions used. The 

annual maximum DC system output for this simulation was 3.378 kW, while the maximum AC 

system output was 3.244 kW. This dataset was scaled as appropriate to the solar PV array 

sizes specified in the simulations. 

 

Table A17 

Solar PV generation parameter assumptions  

Parameter Value 

Location 40.85°N, 74.66°W 

DC System Size 4 kW 

Module Type Standard 

Array Type Fixed (open rack) 

Array Tilt 20° 

Array Azimuth 180° 

System Losses 14.08% 

Inverter Efficiency 96% 

DC to AC Size Ratio 1.2 

Capacity Factor 14.7% 

Demand scaling 

For the 4 kW DC system described above, the average annual output is 15.31% (DC) or 

14.65% (AC) of maximum theoretical output. In order to determine how large of a solar PV 

system to simulate for each vehicle type, we deferred to the GNA report, which indicated the 

preferred solar PV size should provide 80% of annual vehicle demand (in kWh). Thus, the solar 

PV size should be 80% / 14.65% = 5.46 times the rated DC power. 

 

Table A18 below summarizes the solar PV sizes and solar battery capacities by vehicle type. 

http://blogs.edf.org/energyexchange/files/2021/03/EDF-GNA-Final-March-2021.pdf
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Table A18 

Solar PV size and solar battery capacity by vehicle type 

Business type Vehicle class 

Solar PV (rated 

DC kW) 

Solar battery 

capacity (kWh) 

Landscaping 3 23 100 

Food service 4 64 280 

Wired telecom 5 294 1,290 

Armored car 6 220 960 

Yard tractors 7 18 80 

Selection of representative weeks per season 

Total cost of ownership 

The total cost of ownership, Ctotal, whether expressed in absolute or amortized (annual or 

monthly) terms, was calculated as the sum of the following components: 

 

𝐶𝑡𝑜𝑡𝑎𝑙 = 𝐶𝑠𝑜𝑙𝑎𝑟 𝑃𝑉 + 𝐶𝑏𝑎𝑡𝑡𝑒𝑟𝑦 + 𝐶𝑐ℎ𝑎𝑟𝑔𝑒𝑟 𝑐𝑎𝑝𝑖𝑡𝑎𝑙 + 𝐶𝑐𝑎𝑏𝑙𝑒 𝑎𝑛𝑑  𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑠 + 𝐶𝑐ℎ𝑎𝑟𝑔𝑒𝑟 𝑖𝑛𝑠𝑡𝑎𝑙𝑙

+ 𝐶𝑐ℎ𝑎𝑟𝑔𝑒𝑟 𝑤𝑎𝑟𝑟𝑎𝑛𝑡𝑦 

+𝐶𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑚𝑎𝑘𝑒−𝑟𝑒𝑎𝑑𝑦 + 𝐶𝑢𝑡𝑖𝑙𝑖𝑡𝑦 𝑚𝑎𝑘𝑒−𝑟𝑒𝑎𝑑𝑦 + 𝐶𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 

 

In the sections below, we detail how we estimated each of these parameters with the exception 

of the last one, which was an output of the model optimization. 

Solar PV 

We used data from EDF fleet partners to estimate the average cost of a solar PV system. The 

DHE system had a rated DC capacity of 864 kW and total cost of $2,307,000. We assumed a 

federal tax credit of 26%. Therefore, the normalized cost was $1,976/kW (raw DC) or $2,151/kW 

(final AC). We used the AC cost per kW for all sizes of solar PV systems in our analysis. 

Solar battery 

Similarly, we used data from EDF fleet partners to estimate the average cost of a solar battery 

system. The DHE system had an energy capacity of 130 kWh and 60 kW power capacity, and 

cost $93,822. We also assumed a federal 26% tax credit as for solar PV above. The normalized 

cost was $534/kWh, which we used without modification for estimating solar battery costs. 
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Charger capital 

We used three different cost estimates (ICCT, RMI, and Smart Charge America) for Level 3 

networked chargers to produce 12 different data points with capacities between 25 and 300 kW.  

 

Figure A5 shows all data, fitted with a linear trendline (R2 = 0.913). However, we find that a 

trendline with capacity exponent of 0.6 fits the data much better (R2 = 0.969); this fit is shown in 

Figure A6. We subsequently used this fit to scale charger costs to any capacity. Table A19 

shows the best-fit parameters, along with estimated costs for the capacity values used in the 

analysis. 

 

Figure A5 

Charger cost vs. power rating, with best-fit linear trendline 

 
Figure A6 

Charger cost vs. power rating^k, with best-fit linear trendline for k = 0.6 
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Table A19 

Best-fit parameters to charger cost vs. capacity (kW)^k, and estimated cost vs. capacity 

Parameter Value 

k 0.6 

slope 5,383 

intercept -25,500 

R^2 0.969 

Capacity (kW) Cost 

20 $6,983 

30 $15,930 

50 $30,789 

60 $37,296 

100 $59,818 

150 $83,317 
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Charger cable and contracts 

The RMI report provided estimates of cable costs (average of $2,500) and annual costs (data 

plus network contracts, average of $387/yr. in total). These costs were added to the charger 

capital costs estimated above. 

Charger installation 

Installation costs were obtained from the ICCT report, which provided a breakdown of Level 3 

charger costs by labor, materials, permits, and taxes per charger, broken out separately by 

power level (50, 150 or 350 kW) and number of chargers per site (1, 2, 3-5, and 6-20). 

 

The sum of costs per charger followed a power law relationship with the number of chargers 

(where we approximated the number in each category from the average of ranges given, e.g., 1, 

2, 4, and 13 chargers, respectively, corresponding to the four categories listed above); see 

Figure A7. We performed separate linear fits to ln-ln data for each power level (R2 > 0.9994), 

and found that the slopes of these fits were virtually identical (standard deviation 0.0025%). The 

intercepts vs. capacity were fit to a linear function (Figure A8), which was used to estimate costs 

for different power levels. See Table A20 and Table A21. 

 

Figure A7 

Charger installation cost vs. number of chargers and charger capacity (kW), and power-

law fits 
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Figure A8 

Ln-ln intercept vs. charger capacity and linear fit 
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Table A20 

Linear fitting parameters to ln-ln intercept vs. charger capacity (kW) 

ln-ln slope: 0.627310 

Linear fit to ln-ln intercept: 

slope 0.001292 

intercept 10.6376 

R^2 0.9556 

 

Table A21 

Estimated ln-ln intercept vs. charger capacity, and estimated total charger installation 

costs vs. charger capacity and number of chargers 
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 Charger capacity (kW): 

 20 30 50 60 100 150 

ln-ln intercept: 10.6634 10.6764 10.7022 10.7151 10.7668 10.8314 

No. of 

chargers Total charger installation cost: 

1 $42,763 $43,319 $44,454 $45,032 $47,420 $50,585 

2 $66,056 $66,915 $68,667 $69,560 $73,249 $78,138 

3 $85,187 $86,295 $88,554 $89,706 $94,464 $100,769 

4 $102,035 $103,362 $106,068 $107,447 $113,147 $120,698 

5 $117,366 $118,892 $122,005 $123,592 $130,147 $138,833 

6 $131,587 $133,298 $136,788 $138,567 $145,917 $155,656 

7 $144,947 $146,832 $150,676 $152,636 $160,732 $171,459 

8 $157,612 $159,662 $163,841 $165,972 $174,776 $186,441 

9 $169,698 $171,905 $176,406 $178,700 $188,179 $200,738 

10 $181,293 $183,651 $188,459 $190,910 $201,036 $214,453 

11 $192,463 $194,966 $200,070 $202,672 $213,423 $227,666 

12 $203,260 $205,904 $211,294 $214,042 $225,396 $240,439 

13 $213,727 $216,506 $222,174 $225,064 $237,002 $252,820 

14 $223,897 $226,809 $232,747 $235,774 $248,280 $264,850 

Charger warranty 

Charger warranties were estimated from three charger capacities reported in RMI’s EV report. 

One was for a 7.7 kW Level 2 fleet charger, while the other two were DC fast chargers (50 and 

62.5 kW capacity, respectively). Cost was presented as an up-front payment plus a per-year 

cost after year 3. We converted this information into a net present value (NPV) using an 

assumed 20-year charger lifetime and 8%/yr discount rate (see Financing section). Figure A9 

shows the data with linear best-fit. Table A21 shows the best-fit parameters.   

 

Figure A9 

Charger warranty cost (NPV/kW) vs. capacity, with best-fit trendline 

https://rmi.org/wp-content/uploads/2020/01/RMI-EV-Charging-Infrastructure-Costs.pdf
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Table A21 

Best fit parameters to warranty cost (NPV $/kW) vs. charger capacity (kW) 

Slope 3.136 

Intercept 424 

R^2 0.9989 

 

Customer make-ready 

The cost of preparing the electrical system for EV charging (“make-ready”) on the customer side 

was provided by estimates from RMI in their EV report that make-ready costs typically make up 

30-40% of total charger installation costs. Using the average of this range (35%), this implies 

that make-ready costs alone constitute 35%/(1 - 35%) = 54% of other costs, which we assumed 

consisted of charger capital, cables, and installation. We applied this ratio in all charger 

configurations to estimate total customer make-ready costs. 

Utility make-ready 

Utility make-ready costs were provided by the RMI report for three ranges of transformer 

capacities, which we used as a proxy for all utility make-ready costs: 150-300 kVA (which is 

virtually identical to kW), 500-750 kW, and 1,000+ kW. Both high and low cost estimates were 

provided for each. We took the average cost and divided by the average kW capacity, where for 

the 1,000+ kW category, we assumed the average was 1,250 kW. The plotted data appeared to 

follow a roughly exponential curve of cost vs. capacity (Figure A10), so we performed a least-

https://rmi.org/wp-content/uploads/2020/01/RMI-EV-Charging-Infrastructure-Costs.pdf
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squares fit to ln(cost) vs. capacity, obtaining an R2 of 0.978. Fitting parameters and estimated 

costs are shown in Table A22. 

 

Figure A10 

Utility make-ready cost vs. capacity, with best-fit trendline to ln(cost) vs. capacity 

 
 

Table A22 

Best fit parameters to ln(cost) vs. capacity, and estimated costs vs. capacity 

Parameter Value 

Slope 0.00099367 

Intercept 10.4145 

R^2 0.9780 

Capacity (kW) Cost 

50 $35,039 

100 $36,824 

150 $38,700 

250 $42,743 

500 $54,796 

750 $70,248 
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1000 $90,057 

1250 $115,453 

Financing 

We assumed financial parameters summarized in Table A23, and used these assumptions to 

convert among up-front (capital) costs, annual costs, and net present value costs. 

 

Table A23 

Financial parameter assumptions 

Parameter Value Units 

Solar PV lifetime 20 yrs 

Solar battery lifetime 10 yrs 

Charger, cables, contract, 

warranty lifetimes 20 yrs 

Make-ready lifetime 50 yrs 

Discount rate 8% /yr 

Scaling results to New Jersey 

Atlas provided Class 3-8 new registrations in New Jersey for 2019 and January through March 

2021, which were broken down by make, model, gross vehicle weight (GVWR), fuel type, and 

county. This data was mapped onto a list of counties in the PSE&G service territory, in order to 

determine how many vehicle registrations were associated with that territory. The energy 

savings estimates for the depot sizes simulated were then scaled to New Jersey-wide numbers, 

assuming 100% EV penetration levels. Scaling factors are presented in Table A24. Smaller 

penetration levels can be estimated by downscaling results as appropriate. 

 

Table A24 

New Jersey vehicle scalings by class 

Vehicle class Depot size 

2019 NJ 

vehicle 

registrations 

Fraction of total 

NJ registrations 

Total scale-up 

factor 

3 2 4,371 11.58% 18,879 

4 4 1,739 3.88% 11,218 

5 11 2,149 3.88% 5,041 

6 7 1,861 3.88% 6,860 

7 2 1,324 3.88% 17,081 
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Grid expansion savings 

To estimate grid expansion costs, we examined two data sources: demand charges for the four 

rate structures modeled in this study, and the 2020 ChargEVC report. The highest demand 

charge among the four rate structures, $37.94/kW, was used as our minimum cost estimate, 

whereas the estimated NPV cost of NJ grid expansion between 2021 and 2050 presented in the 

ChargEVC report, implying $214/kW, was used as our maximum cost estimate. Input 

assumptions for this calculation are presented in Table A25. These two values were used to 

bracket our estimates for avoided costs when comparing unmanaged to managed charging, 

based on the reduction in peak loads. 

 

Table A25 

Parameters used to calculate average cost of 2021-2050 grid expansion in New Jersey 

Parameter Value Units 

Start year 2021  

Mid year 2035  

End year 2050  

Start year peak 0 GW 

Mid year peak 1.2 GW 

End year peak 2.8 GW 

Discount rate 3% /yr 

NPV $4,725 $M 

Cost per GW $214 $/kW 

Source: ChargEVC, 2020, Full Market Vehicle Electrification in New Jersey: The Opportunities, 

Impacts, and Net Benefits For Light-, Medium-, and Heavy-Duty Electric Vehicles. 

  

http://www.chargevc.org/wp-content/uploads/2020/10/ChargEVC-Full-Market-Electrification-Study-FINAL-Oct-7-2020.pdf
http://www.chargevc.org/wp-content/uploads/2020/10/ChargEVC-Full-Market-Electrification-Study-FINAL-Oct-7-2020.pdf
http://www.chargevc.org/wp-content/uploads/2020/10/ChargEVC-Full-Market-Electrification-Study-FINAL-Oct-7-2020.pdf
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Appendix B: V2G-Sim modifications 

Overview 

V2G-Sim was developed at Lawrence Berkeley National Laboratory and built to couple models 

of vehicle powertrain dynamics, vehicle charging, and automated methods to rapidly initialize 

and execute large numbers of individual vehicle models. Users can also activate built-in models 

for automated trip-specific drive cycle generation, and electrochemical models to predict the 

internal dynamics and degradation of a vehicle battery. It is freely available on Github. 

 

Much of this capability was not utilized for this project, as electricity demand was directly 

provided to the optimization part of the model using vehicle itineraries. The other component of 

V2G-Sim was to determine optimal charging based on minimizing or maximizing an objective 

function. Emerging Futures modified this objective function to reflect a total cost of electricity 

that was minimized for managed charging.  

 

The model has been used successful in a number of previous studies including several peer-

reviewed papers: 

● Coignard, J., S. Saxena, J. Greenblatt, D. Wang, 2018. “Clean Vehicles as an Enabler 

for a Clean Electricity Grid,” Environ. Res. Lett., 13: 054031. DOI: 10.1088/1748-

9326/aabe97. 

● Zhang, C., J. B. Greenblatt, P. MacDougall, S. Saxena, A. Jayam Prabhakar, 2020. 

“Quantifying the benefits of electric vehicles on the future electricity grid in the 

midwestern United States,” Applied Energy, 270: 115174. DOI: 

10.1016/j.apenergy.2020.115174. 

● Greenblatt, J., M. McCall, 2021. Exploring enhanced load flexibility from grid-connected 

electric vehicles on the Midcontinent Independent System Operator grid, Final report to 

the Midcontinent Independent System Operator, Inc., February. 

https://cdn.misoenergy.org/Exploring%20enhanced%20load%20flexibility%20from%20gr

id%20connected%20EVs%20on%20MISO%20grid543291.pdf. 

Modifications for project 

The objective function, constructed to minimize the operational costs of the EVs, was modified 

to be convex in order to apply a mixed-linear integer program. This objective function is 

expressed as follows: 

𝑚𝑖𝑛 (𝑐𝑇𝑥) 

 

The 𝑥 vector includes the variables of the simulation and the 𝑐𝑇 vector includes the costs 

associated with these variables. These variables fall into six categories: (1) electricity 

consumption from the grid to the EVs, (2) electricity consumption from the solar PV battery to 

the EVs, (3) solar output obtained from the solar PV to the battery, (4) the maximum power 

http://v2gsim.lbl.gov/
https://github.com/
https://cdn.misoenergy.org/Exploring%20enhanced%20load%20flexibility%20from%20grid%20connected%20EVs%20on%20MISO%20grid543291.pdf
https://cdn.misoenergy.org/Exploring%20enhanced%20load%20flexibility%20from%20grid%20connected%20EVs%20on%20MISO%20grid543291.pdf
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consumed from the grid, (5) the number of ports being used at a time, and (6) the electricity 

consumption from the grid to the solar PV battery. 

 

The following includes a list of constraints used for this simulation: 

1. EV Depot Minimum State-of-Charge: This constraint ensures that the state-of-charge of 

each EV is greater than a set minimum value. 

2. EV Depot Maximum State-of-Charge: This constraint ensures that the state-of-charge of 

each EV is less than a set maximum value. 

3. Infrastructure Limits: The constraint ensures that the electricity consumption limit of each 

infrastructure component used is less than their set, corresponding value. These limits of 

the infrastructure components include the following: (1) the total energy which can be 

consumed by an EV, (2) the total amount of electricity which can be consumed by the 

grid, (3) the maximum solar output which can be obtained by the solar PV battery, (4) 

the total solar output which is produced for the solar PV battery, (5) the total electricity 

which can be consumed by the solar PV battery from the grid, and (6) the demand 

charge tier value for electric power. The one infrastructure component not included in 

this constraint involves the charging port system, which has its own charging ports. 

4. Demand Charge: This constraint ensures that the superposition of the variables 

representing the maximum power consumed (to be used for the demand charge 

calculation) is equal to the total electricity consumption at the time when consumption is 

maximum. 

5. Positive Electricity Consumption: This constraint ensures the electricity consumption is 

non-negative in all cases. 

6. Solar PV Battery Minimum State-of-Charge: This constraint ensures that the state-of-

charge of the solar PV battery is greater than a set minimum value. 

7. Solar PV Battery Maximum State-of-Charge: This constraint ensures that the state-of-

charge of the solar PV battery is less than a set maximum value. 

8. Singular Port Constraint: This constraint ensures that for each port, the total charging 

which occurs is either that of half or the total charging station capacity. If two EVs are 

being charged at one station, each port can only provide half of the charging capacity of 

the charging station. If one EV is being charged, one port can provide the full charging 

capacity of the charging station. 

9. Total Port Constraint: This constraint ensures that the number of ports being used to 

charge the EV depot never exceeds the number of ports available. 

10. Charging Port Capacity: This constraint ensures that the electricity being consumed from 

a charging port never exceeds the maximum capacity of the charging station. 

Modeling 

In this section, we describe the model in which the EVs operate in our analysis and optimization. 

 

First, this model contains modifications to V2G-Sim which grew out of work that Emerging 

Futures performed using V2G-Sim for the Midcontinent Independent System Operator in 2019-

2020. The modifications are associated with the development of a charging infrastructure 

https://www.misoenergy.org/
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system, driving-charging behaviors for the varying vehicle classes, and input parameters 

associated with the settings of interest. These variations were eventually tried and tested during 

the optimization.  

 

Second, we also incorporate assumptions associated with the operation of the charging station 

infrastructure system to best capture the interests of the system operator when aiming to 

minimize costs. The objective in doing this involves aiming to implement a model as realistic as 

possible, predicated upon the point-of-view of those managing the charging station 

infrastructure system. These assumptions include the following: (1) the operators aim to 

minimize the costs, (2) forecasting electricity prices can only be done one day ahead, and (3) 

EV charging is subject to the constraints of the infrastructure system. 

Modifications 

As it pertains to the modifications that we applied to V2G-Sim, the following include those 

modifications as well as brief descriptions: 

 

1. Charging Infrastructure System: We incorporate a system which contains an electric 

grid, a solar PV - battery configuration, and a system of charging stations, all of which 

are all linked to one another. This system has associated with it power ratings for all 

components to model a realistic power infrastructure system for when EVs charge. 

 

2. Driving-Charging Behaviors: Profiles for driving and charging were incorporated into 

the model. These windows of time for driving and charging were used later on for the 

optimization to signify when EVs could and could not be charged. Moreover, during 

driving, calculations of energy consumption took place to estimate the energy 

depreciation of the EVs’ batteries. 

 

3. Input Parameters: Various properties associated with the EV analysis and optimization 

are provided as inputs. First, the properties associated with the EV depot and the 

charging infrastructure system are provided, with no variation throughout the 

optimization. For pricing, four rate structures are used in the analysis. For parameters 

related to weather, solar production and efficiency are varied for four months of the year. 

Charging Infrastructure System 

A charging infrastructure system was developed to capture the limits in the demand of power 

associated with EV charging; in essence, this puts a physical bound on how much charging 

stations can power EVs from the grid and a solar PV - battery configuration. A schematic of this 

model is provided in Figure B1. 

 

Figure B1 

Layout of Charging Infrastructure System used for EV Modeling 
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The zone for which the power stations are contained is connected to the solar PV - battery 

configuration on one end and the electric grid on the other. The electric grid and the solar PV - 

battery configuration are connected to one another, as well. The significance of this lies in the 

links between each system component, where each link contains a physical limit in the amount 

of electricity that can be carried from one part of the system to another. 

 

As it pertains to constraints on the system, three exist as follows: (1) the grid constraint on the 

charging station infrastructure, (2) the solar PV - battery constraint on the charging station 

infrastructure, and (3) the constraint associated with how much the solar PV - battery system is 

able to receive from the electric grid and vice versa. In essence, this system is put in place to 

ensure that the electricity consumption of the EV charging stations is bounded by a realistic 

infrastructure setting. 

Driving-Charging Behaviors 

EVs are modeled both during driving and charging. During driving, estimations of energy 

consumption are calculated beforehand and used to model the energy depreciation of the EVs’ 

batteries. During charging, EVs are charged to completion either by the end of the day (for class 

3-6 vehicles) or up to a point of sufficiency (for class 7 vehicles), subject to the bounds of the 

charging infrastructure system and batteries’ energy capacities (discussed in depth in the 

Optimization - Constraints section).  

 

For class 3-6 vehicles, these profiles simply consisted of one window for driving during typical 

business hours and one window for charging outside of typical business hours. The objective 

during charging involved ensuring that the EVs were 100% charged before the next day’s 

operations. 
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For class 7 vehicles, these profiles were sporadic, where windows for driving and charging 

came about more-or-less arbitrarily throughout the day. The objective during charging involved 

ensuring that the EVs had a sufficient amount of energy within the batteries at all times during 

operation. Having 100% charge was irrelevant; rather, the objective involved maintaining 

enough charge at all times within sporadic settings. 

Input Parameters 

In essence, properties are input into the analysis and optimization to describe the EV depot and 

associated setting, the variation in price, and the variation in EV and solar PV performance with 

weather. These properties are described further, as follows: 

 

1. EV Depot & Infrastructure System Properties: Each EV depot has an associated 

battery capacity, size (in terms of number of EVs), and charge-discharge schedule. 

Moreover, the components of the charging infrastructure system are rated for each EV 

depot, where the solar PV - battery configuration and the charging station infrastructure 

vary in design to examine differing capabilities during charging of the EV depot. 

 

2. Rate Structures: The rate structures inputs vary with there being four differing rate 

structures for analysis described in Electricity rates in the main text. 

 

3. Weather: Both the EV efficiency and the solar production vary with the weather. To 

capture this, the model was implemented across four months: January, April, July, and 

October. The variation for all months was captured during optimization. 

Assumptions 

Cost Minimization 

The sole objective of the operators is to minimize the costs associated with operating the EV 

depot. This objective combines the contribution of both the energy charge and the demand 

charge. This assumption acts as the basis for the objective function used in the optimization, as 

described in Optimization - Objective Functions & Description - Objective Function. 

Day-Ahead Charging 

Having in hand information regarding the energy charge pricing is included in the modeling 

assumptions. In the modeling, the operators are assumed to know the information 24 hours 

ahead of the current time at 3 pm for every day of modeling. Therefore, the models start at 3 pm 

every day for the analysis.  

Infrastructure Constraints 

The system operators are assumed to only be able to charge the EVs subject to the constraints 

of the infrastructure system. The system is designed so that EVs at any time cannot charge 

more than what is available from the electric grid, the charging station infrastructure, and the 
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solar PV - battery system. For the solar PV - battery system, it is assumed that the battery 

absorbs as much power from the solar PV as possible and that there are no constraints that the 

battery is filled by a certain amount at any particular time. 

Optimization 

The optimization can be classified into two categories: the minimization of an objective function 

and a set of systems of equations which pose as constraints. In this section, we describe the 

use of this optimization from a higher level (in the Optimization - Methods section) and in more 

depth for these two categories (in Optimization - Objective Function & Description section and 

Optimization - Constraints section). 

Methods 

A linear, mixed-integer program with linear constraints was determined as the right set of 

methods to develop a solution which optimizes for the operational cost of EV depot usage for all 

vehicle classes. The EV-charging problem was set up to be convex, allowing for optimal 

solutions for EV charging to be determined when minimizing operational costs. 

 

Pertaining to the objective function, the calculation performed was linear, where every variable 

used for analysis is multiplied by a cost coefficient, and all products of cost coefficients with 

variables are superimposed. Each cost coefficient - variables pair represents a different cost, 

such as those associated with the rate structure and the demand charge, among others. 

 

Pertaining to the constraints, these simply involve the implementation of linear sets of equations 

to bound our analysis and optimization to a realistic, physical scenario. This involves ensuring 

that the EV batteries’ and the battery associated with the solar PV - battery system are charged 

between 0% and 100% of their capacities at all times, that the number of ports used during 

analysis does not exceed physical limits, and that the links of the Charging Infrastructure 

System do not transmit an amount of electricity which exceeds that of their capacities, among 

other physical bounds. 

Objective Function & Description 

Objective Function 

As mentioned earlier, the objective function constructed to minimize the operational costs of the 

EVs is expressed as follows: 

 

𝑚𝑖𝑛 (𝑐𝑇𝑥) 

 

For each category representing the variable classes, the variables and their corresponding cost 

coefficients were ordered sequentially, as shown in Table B1. Descriptions for each category for 

the cost coefficients and variables are provided in the subsequent section. 
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The objective is defined as the costs and variables multiplied by one another and subsequently 

superimposed, providing the total cost of the electricity consumed during operation. We aim to 

minimize this objective with respect to the constraints of the system. 

 

Table B1 

Table of the Linear Cost Coefficients & Variables Used for Optimization 

# Cost Category Cost Coefficient (cn) Cost Variables (xn) 

1 grid - EV 
electricity consumption 

dependent on the 
rate structure values 

one per vehicle and 
per time interval 

2 solar PV - EV 
electricity consumption 

zero cost or penalty value, 
dependent on optimization 

one per vehicle and 
per time interval 

3 solar PV - battery system 
solar insolation 

zero cost; implemented for 
use in the constraint system 

one per 
time interval 

4 demand charges values dependent on 
rate structure used 

one per 
demand charge 

5 # of charging station 
ports in use 

zero cost; implemented for 
use in the constraint system 

one per vehicle and 
per time interval 

6 grid - battery (of solar - PV 
system) electricity consumption 

dependent on the 
rate structure values 

one per 
time interval 

Description 

These costs and variables represent the following in the model: 

 

1. grid - EV electricity consumption: This cost category represents the electricity costs 

associated with the operational costs of the EVs, subject to the rate structure of use. 

 

2. solar PV - EV electricity consumption: This cost category represents the costs of the 

EVs associated with the solar PV - battery system. This cost amounts to zero in all 

cases; however, this needs to be put in place to enhance the minimization of the 

operational costs and to incorporate later for the system of equations. 

 

3. solar PV - battery system solar insolation: This cost category represents the cost of 

the solar insolation used to recover the battery state-of-charge. This cost amounts to 

zero in all cases; however, this needs to be put in place to incorporate later for the 

system of equations. 

 

4. demand charges: This cost category represents the cost of the demand charges used 

during optimization. 

 

5. # of charging station ports in use: This cost category represents the costs associated 
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with the charging station ports in use. This cost amounts to zero in all cases; however, 

this needs to be put in place to incorporate later for the system of equations. The 

association with any positive cost is that these variables limit the use of charging station 

ports in the system of equations, which are in turn used to dictate how much electricity 

can be consumed by the EVs from the electric grid and the solar PV - battery system. 

 

6. grid - battery (of solar - PV system) electricity consumption: This cost category 

represents the electricity costs associated with the operational costs of the battery used 

in the solar PV - battery system, subject to the rate structure of use. 

 

All variables are represented on a time-series basis over the course of a day in 15-minute 

intervals. For variables representing EV behavior, the number of variables amounts to 96 total 

intervals for the day multiplied by ‘n’ number of EVs. For other variables, the number of 

variables only amounts to 96, the total number of intervals for the day. 

Constraints 

Modeling of the constraints was the key part of this analysis. The main objective in the 

development of the constraints was to model the system as realistic as possible. This led to the 

diligent pursuit of developing and implementing the constraints provided in this section. 

EV Minimum State-of-Charge 

At all times the EVs must maintain a minimum state-of-charge. This state-of-charge is 

dependent on the electricity received by the EVs from the grid and the solar-PV battery, the 

energy consumed by the EVs during operation, and the initial charge at the start of the 

operation period for the EVs. The formulation is modeled as follows for each time step and EV: 

 

𝐸𝑉𝑖 ∶     ∑

𝑗

𝑡=0

𝑥𝑔𝑟𝑖𝑑,𝑗 + ∑

𝑗

𝑡=0

𝑥𝑠𝑜𝑙𝑎𝑟,𝑗 − ∑

𝑗

𝑡=0

𝑒𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛,𝑗 + 𝑐ℎ𝑎𝑟𝑔𝑒𝑖𝑛𝑖𝑡 ≥ 𝛼 ⋅ 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑏𝑎𝑡𝑡𝑒𝑟𝑦 

 

… where the variables being represented are as follows: 

 

● 𝑥𝑔𝑟𝑖𝑑,𝑗: electricity flow from the grid to the EV when parked, at a time j 

● 𝑥𝑠𝑜𝑙𝑎𝑟,𝑗: electricity flow from the solar-PV battery to the EV when parked, at a time j 

● 𝑒𝑠𝑜𝑙𝑎𝑟,𝑗: energy consumption of the EV during operation 

● 𝑐ℎ𝑎𝑟𝑔𝑒𝑖𝑛𝑖𝑡: initial energy capacity of the EV during window of analysis 

● 𝛼: proportion for which the battery needs to remain at a minimum 

● 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑏𝑎𝑡𝑡𝑒𝑟𝑦: battery capacity of the EV being modeled 

 

In this equation, the α term dictates the proportion for which the battery needs to remain at a 

minimum. For the “daytime-operation” vehicles, this value is 0. For the “around-the-clock” 

vehicles, this value is 0.025. 
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For the “daytime-operation” vehicles, the minimum state-of-charge at the end-of-day is required 

to be 100%. For the “around-the-clock” vehicles, this value is 27.5%. 

EV Maximum State-of-Charge 

At all times the EVs must maintain a maximum state-of-charge. This state-of-charge is 

dependent on the electricity received by the EVs from the grid and the solar-PV battery, the 

energy consumed by the EVs during operation, and the initial charge at the start of the 

operation period for the EVs. The formulation is modeled as follows for each time step and EV: 

 

𝐸𝑉𝑖 ∶     ∑

𝑗

𝑡=0

𝑥𝑔𝑟𝑖𝑑,𝑗 + ∑

𝑗

𝑡=0

𝑥𝑠𝑜𝑙𝑎𝑟,𝑗 − ∑

𝑗

𝑡=0

𝑒𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛,𝑗 + 𝑐ℎ𝑎𝑟𝑔𝑒𝑖𝑛𝑖𝑡 ≤ 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑏𝑎𝑡𝑡𝑒𝑟𝑦 

 

… where the variables being represented are as follows: 

 

● 𝑥𝑔𝑟𝑖𝑑,𝑗: electricity flow from the grid to the EV when parked, at a time j 

● 𝑥𝑠𝑜𝑙𝑎𝑟,𝑗: electricity flow from the solar-PV battery to the EV when parked, at a time j 

● 𝑒𝑠𝑜𝑙𝑎𝑟,𝑗: energy consumption of the EV during operation 

● 𝑐ℎ𝑎𝑟𝑔𝑒𝑖𝑛𝑖𝑡: initial energy capacity of the EV during window of analysis 

● 𝛼: proportion for which the battery needs to remain at a minimum 

● 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑏𝑎𝑡𝑡𝑒𝑟𝑦: battery capacity of the EV being modeled 

Infrastructure Limits 

For this set of constraints, six categories can be distinguished. Descriptions of these constraints 

as well as their representative equations are provides as follows: 

 

1. Charge Limits: This set of constraints represents the limits for which charging station 

infrastructure can charge all EVs at any one time. 

 

(𝑥𝑔𝑟𝑖𝑑,𝑖 + 𝑥𝑠𝑜𝑙𝑎𝑟,𝑖)|𝑖=1:(𝐸𝑉⋅𝑡) ≤ 𝑐ℎ𝑎𝑟𝑔𝑒𝑙𝑖𝑚𝑖𝑡 ⋅ 𝑒𝑖|𝑖=1:(𝐸𝑉⋅𝑡) 

 

… where the variables being represented are as follows: 

 

● 𝑥𝑔𝑟𝑖𝑑,𝑖: electricity flow from the grid to the EV, at time t and for a particular EV 

● 𝑥𝑠𝑜𝑙𝑎𝑟,𝑖: electricity flow from the solar-PV battery to the EV, at time t and for a particular 

EV 

● 𝑐ℎ𝑎𝑟𝑔𝑒𝑙𝑖𝑚𝑖𝑡: limit for total charge associated with the charging station infrastructure 

● 𝑒𝑖: proportion of 15-min. interval for which charging can occur 

 

2. Grid Limits: This set of constraints represents the limits for which electricity can be 

consumed from the electric grid. 
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(∑

𝐸𝑉

𝑖=0

𝑥𝑔𝑟𝑖𝑑,𝑖)𝑡 |𝑡=1:𝑛 ≤ 𝑔𝑟𝑖𝑑𝑙𝑖𝑚𝑖𝑡 

 

… where the variables being represented are as follows: 

 

● 𝑥𝑔𝑟𝑖𝑑,𝑖: electricity flow from the grid to all EVs, at time t 

● 𝑔𝑟𝑖𝑑𝑙𝑖𝑚𝑖𝑡: limit for the total electricity consumption from the grid from all EVs, limited by 

the transformer 

 

3. Solar-PV Battery Limits: This set of constraints represents the limits for which electricity 

can be consumed from solar PV - battery system. 

 

(∑

𝐸𝑉

𝑖=0

𝑥𝑠𝑜𝑙𝑎𝑟,𝑖)𝑡  |𝑡=1:𝑛 ≤
0.46 ⋅  𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝑏𝑎𝑡𝑡.

4
 

 

… where the variables being represented are as follows: 

 

● 𝑥𝑠𝑜𝑙𝑎𝑟,𝑖: electricity flow from the solar-PV battery to all EVs, for all EVs 

● 𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝑏𝑎𝑡𝑡.: total storage capacity (used to formulate the power demand limits) 

 

4. Battery - Solar Intake Limits: This set of constraints represents the limits for which the 

battery of the solar PV - battery system can intake from the solar insolation. 

 

𝑥𝑠𝑜𝑙𝑎𝑟−𝑏𝑎𝑡𝑡,𝑡|𝑡=1:𝑛 ≤ 𝑚𝑖𝑛. (𝑠𝑜𝑙𝑎𝑟𝑙𝑖𝑚𝑖𝑡,𝑡 ,
0.46 ⋅  𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝑏𝑎𝑡𝑡.

4
)|𝑡=1:𝑛 

 

… where the variables being represented are as follows: 

 

● 𝑥𝑠𝑜𝑙𝑎𝑟−𝑏𝑎𝑡𝑡,𝑡: electricity flow from the solar-PV to the battery in the solar-PV battery 

system, at time t 

● 𝑠𝑜𝑙𝑎𝑟𝑙𝑖𝑚𝑖𝑡,𝑡: solar insolation, at time t 

● 𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝑏𝑎𝑡𝑡.: total storage capacity (used to formulate the power demand limits) 

 

5. Grid - Battery Intake Limits: This set of constraints represents the limits for which the 

battery of the solar PV - battery system can intake from the electric grid. 

 

𝑥𝑔𝑟𝑖𝑑−𝑏𝑎𝑡𝑡,𝑡|𝑡=1:𝑛 ≤ 𝑚𝑖𝑛. (𝑔𝑟𝑖𝑑𝑙𝑖𝑚𝑖𝑡 ,
0.46 ⋅  𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝑏𝑎𝑡𝑡.

4
)|𝑡=1:𝑛 

 

… where the variables being represented are as follows: 
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● 𝑥𝑔𝑟𝑖𝑑−𝑏𝑎𝑡𝑡,𝑡: electricity flow from the electric grid to the battery of the solar-PV battery 

system, at time t 

● 𝑔𝑟𝑖𝑑𝑙𝑖𝑚𝑖𝑡: limit for the total electricity consumption from the grid from all EVs, limited by 

the transformer 

● 𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝑏𝑎𝑡𝑡.: total storage capacity (used to formulate the power demand limits) 

 

6. Demand Charge Lower Tier Limits: This set of constraints represents the power limits for 

which the lower demand charge(s) cannot exceed. 

 

In the typical case for which there is only one tiered demand structure, the bottom tier is limited 

as follows: 

𝑥𝑑𝑒𝑚𝑎𝑛𝑑,1 ≤ 𝑑𝑒𝑚𝑎𝑛𝑑1,𝑙𝑖𝑚𝑖𝑡 

 

In the typical case for which there exists two tiered demand structures (for rate structure 1 

during the summer), the second bottom tier is limited as follows: 

 

𝑥𝑑𝑒𝑚𝑎𝑛𝑑,3 ≤ 𝑑𝑒𝑚𝑎𝑛𝑑3,𝑙𝑖𝑚𝑖𝑡 

 

… where the variables being represented are as follows: 

 

● 𝑥𝑑𝑒𝑚𝑎𝑛𝑑,1: demand charge for the rate structure’s bottom tier 

● 𝑥𝑑𝑒𝑚𝑎𝑛𝑑,3: demand charge for the rate structure’s second bottom tier (only for rate 

structure 1 during the summer) 

● 𝑑𝑒𝑚𝑎𝑛𝑑1,𝑙𝑖𝑚𝑖𝑡: demand charge limit for the rate structure’s bottom tier 

● 𝑑𝑒𝑚𝑎𝑛𝑑3,𝑙𝑖𝑚𝑖𝑡: demand charge limit for the rate structure’s second bottom tier (only for 

rate structure 1 during the summer) 

Demand Charge 

The variables for the demand charge are bound to be greater than the sum of all variables used 

for grid operation. Generally speaking, this is represented as follows: 

 

𝑥𝑑𝑒𝑚𝑎𝑛𝑑,1 + 𝑥𝑑𝑒𝑚𝑎𝑛𝑑,2 − ∑

𝑡

𝑖=0

𝑥𝑔𝑟𝑖𝑑,𝑖 ≥ 0 

 

… where the variables being represented are as follows: 

 

● 𝑥𝑑𝑒𝑚𝑎𝑛𝑑,𝑖: variables for the maximum electricity demanded at any time 

● 𝑥𝑔𝑟𝑖𝑑,𝑖: electricity flow from the grid to the EVs when parked, at a time i 

 

Tier demand charges are minimized by the optimization to be exactly equated to the 

superposition of the grid charges. 
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For rate structures with dual-tiered demand charges, the lower tier is used first before the upper 

tier as it has a lower cost associated with it. For single-tier demand charges, the second variable 

is still present; however, it has a close-to-zero upper bound defined in the Constraints - 

Infrastructure Limits section, greatly limiting its contribution. 

 

For the rate 1, summer season rate structure, two demand charges exist during the day for the 

weekdays, as follows: 

𝑥𝑑𝑒𝑚𝑎𝑛𝑑,1 + 𝑥𝑑𝑒𝑚𝑎𝑛𝑑,2 − ∑

𝑡0

𝑖=0

𝑥𝑔𝑟𝑖𝑑,𝑖 ≥ 0 

 

𝑥𝑑𝑒𝑚𝑎𝑛𝑑,3 + 𝑥𝑑𝑒𝑚𝑎𝑛𝑑,4 − ∑

𝑡

𝑗=𝑡0

𝑥𝑔𝑟𝑖𝑑,𝑗 ≥ 0 

 

The same rules and logic apply to this constraint; however, these two constraints exist during 

different parts of the day and are applied as so. 

Positive Electricity Consumption 

This constraint simply involves making certain that all variables in the analysis are greater than 

zero, to ensure that electricity use is always positive. This is shown simply as follows: 

 

∑

𝑡

𝑗=0

𝑥𝑗 ≥ 0 

 

… where 𝑥𝑗 represents all variables being used in the objective function. 

Solar-PV Battery Minimum State-of-Charge 

At all times the solar-PV battery must maintain a minimum state-of-charge. This state-of-charge 

is dependent on the electricity received from solar intake, electricity received from the grid, and 

the electricity consumed by the EVs from the solar-PV battery during operation. The formulation 

is modeled as follows for each time step and EV: 

 

∑

𝑡

𝑗=0

𝑥𝑠𝑜𝑙𝑎𝑟−𝑏𝑎𝑡𝑡,𝑗 + ∑

𝑡

𝑗=0

𝑥𝑔𝑟𝑖𝑑−𝑏𝑎𝑡𝑡,𝑗 − ∑

𝑡,𝐸𝑉

𝑗=0,𝑛=0

𝑥𝑏𝑎𝑡𝑡−𝐸𝑉𝑠,𝑗,𝑛 ≥ 0 

 

… where the variables being represented are as follows: 

 

● 𝑥𝑠𝑜𝑙𝑎𝑟−𝑏𝑎𝑡𝑡,𝑗: variables representing the solar insolation consumed by battery, at time i 

● 𝑥𝑔𝑟𝑖𝑑−𝑏𝑎𝑡𝑡,𝑗: variables representing grid electricity consumption from the battery, at time i 

● 𝑥𝑏𝑎𝑡𝑡−𝐸𝑉𝑠,𝑗,𝑛: variables representing electricity consumption from the battery, from EV n 

and at time i 
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It should be mentioned that no upper bound was applied to the minimum state-of-charge at the 

end-of-day, unlike the EVs. The reason being is that this considerably increased operational 

costs without justification. When relaxing this constraint, the operational costs decreased with 

increasing battery size. 

Solar-PV Battery Maximum State-of-Charge 

At all times the solar-PV battery must maintain a maximum state-of-charge. This state-of-charge 

is dependent on the electricity received from solar intake, electricity received from the grid, and 

the electricity consumed by the EVs from the solar-PV battery during operation. The formulation 

is modeled as follows for each time step and EV: 

 

∑

𝑡

𝑗=0

𝑥𝑠𝑜𝑙𝑎𝑟−𝑏𝑎𝑡𝑡,𝑗 + ∑

𝑡

𝑗=0

𝑥𝑔𝑟𝑖𝑑−𝑏𝑎𝑡𝑡,𝑗 − ∑

𝑡,𝐸𝑉

𝑗=0,𝑛=0

𝑥𝑏𝑎𝑡𝑡−𝐸𝑉𝑠,𝑗,𝑛 ≤ 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑏𝑎𝑡𝑡𝑒𝑟𝑦 

 

… where the variables being represented are as follows: 

 

● 𝑥𝑠𝑜𝑙𝑎𝑟−𝑏𝑎𝑡𝑡,𝑗: variables representing the solar insolation consumed by battery, at time i 

● 𝑥𝑔𝑟𝑖𝑑−𝑏𝑎𝑡𝑡,𝑗: variables representing grid electricity consumption from the battery, at time i 

● 𝑥𝑏𝑎𝑡𝑡−𝐸𝑉𝑠,𝑗,𝑛: variables representing electricity consumption from the battery, from EV n 

and at time i 

● 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑏𝑎𝑡𝑡𝑒𝑟𝑦: constant representing the energy capacity of the battery in the solar PV 

- battery system 

Singular Port Constraint 

This constraint simply maintains that the variables representing charging from the ports to the 

EVs is always less than a value of two as follows: 

 

∑

𝑡,𝐸𝑉

𝑛=0,𝑗=0

𝑥𝑝𝑜𝑟𝑡,𝑛,𝑗 ≤ 2 

 

… where 𝑥𝑝𝑜𝑟𝑡,𝑛,𝑗 represents all port variables used in the optimization.  

 

The reasoning for constraining these variables to two is that each port is assigned power 

associated with half of the capacity of the charging stations in use. In the case where 𝑥𝑝𝑜𝑟𝑡,𝑛,𝑗 is 

equal to two, an EV can be powered by the equivalent of one charging station at that particular 

time. The next constraint, Total Port Constraint, ensures that no more than ‘n’ number of 

charging stations dedicated to a vehicle depot is in use at any particular time. 
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This constraint does not apply to the yard tractors (Class 7). The variables for the port 

constraints are assigned as booleans, as each of the two yard tractors are assigned their own 

charging station. 

Total Port Constraint 

This constraint constrains the model so that at any particular time, the quantity of ports in use 

cannot be greater than the quantity of ports available, as follows: 

 

∑

𝑗

𝑡=0

𝑥𝑝𝑜𝑟𝑡,𝑡=𝑗 ≤ 𝑛𝑝𝑜𝑟𝑡𝑠 

 

… where the variables being represented are as follows: 

 

● 𝑥𝑝𝑜𝑟𝑡,𝑡: variables representing the use of ports at any particular time 

● 𝑛𝑝𝑜𝑟𝑡𝑠: total numbers of ports available in the optimization 

Charging Port Capacity 

This constraint constrains the model so that at any particular time, the quantity of power being 

demanded at one time cannot be greater than the power available, as follows: 

 

−(𝑥𝑔𝑟𝑖𝑑,𝑖 + 𝑥𝑠𝑜𝑙𝑎𝑟,𝑖)|𝑖=1:(𝐸𝑉⋅𝑡) + 𝑝𝑐𝑎𝑝 ⋅ 𝑥𝑝𝑜𝑟𝑡,𝑖|𝑖=1:(𝐸𝑉⋅𝑡) ≤ 0 

 

… where the variables being represented are as follows: 

 

● 𝑥𝑔𝑟𝑖𝑑,𝑖: electricity flow from the grid to the EV, at time t and for a particular EV 

● 𝑥𝑠𝑜𝑙𝑎𝑟,𝑖: electricity flow from the solar-PV battery to the EV, at time t and for a particular 

EV 

● 𝑥𝑝𝑜𝑟𝑡,𝑡: variables representing the use of ports at any particular time 

 

This constraint goes hand-in-hand with the “Total Port Constraint,” which ensures that the total 

number of ports does not exceed those available. This constraint uses the results from the 

previous constraint to ensure that the EVs do not consume more power than possibly allotted. 
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Appendix C: Additional scenario results 

Hardware and installation cost breakdown 

Table C1 shows the hardware and installation cost breakdown by optimization type and vehicle 

class. 
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Table C1 

Breakdown of non-electricity costs by vehicle class and optimization type 

 Raw cost data ($/yr) 

Vehicle 

class/type and 

optimization 

type Solar PV Solar battery 

Charger 

capital 

Charger 

cables 

Charger 

contracts 

Charger 

install Warranty 

Utility make-

ready 

Customer 

make-ready 

3 

(Unmanaged) $0 $0 $6,093 $509 $0 $4,830 $6,031 $4,940 $3,163 

4 

(Unmanaged) $0 $0 $12,185 $1,019 $0 $7,461 $12,062 $8,930 $4,479 

5 

(Unmanaged) $0 $0 $30,463 $2,546 $0 $13,256 $30,156 $19,993 $4,479 

6 

(Unmanaged) $0 $0 $25,458 $1,528 $0 $10,264 $32,908 $16,097 $4,479 

7 

(Unmanaged) $0 $0 $6,093 $509 $0 $4,830 $6,031 $4,940 $3,163 

3 (Managed) $0 $0 $711 $509 $387 $4,356 $796 $2,410 $3,163 

4 (Managed) $0 $0 $3,136 $509 $387 $4,528 $2,375 $3,532 $4,479 

5 (Managed) $0 $0 $9,408 $1,528 $387 $9,019 $7,124 $8,624 $4,479 

6 (Managed) $0 $0 $7,597 $1,019 $387 $7,085 $6,007 $6,785 $4,479 

7 (Managed) $0 $0 $711 $509 $387 $4,356 $796 $2,410 $3,163 

3 (Mgd. w/ 

solar) $4,996 $3,980 $711 $509 $387 $4,356 $796 $2,410 $3,163 

4 (Mgd. w/ 

solar) $13,958 $11,143 $3,136 $509 $387 $4,528 $2,375 $3,532 $4,479 

5 (Mgd. w/ 

solar) $64,419 $51,336 $9,408 $1,528 $387 $9,019 $7,124 $8,624 $4,479 
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6 (Mgd. w/ 

solar) $48,205 $38,204 $7,597 $1,019 $387 $7,085 $6,007 $6,785 $4,479 

7 (Mgd. w/ 

solar) $4,996 $3,980 $711 $509 $387 $4,356 $796 $2,410 $3,163 
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Electricity cost breakdown 

Table C2 through Table C6 show the electricity cost breakdown by optimization type and rate 

structure; each table shows these results for a different vehicle class. Results are expressed as 

both a net present value per vehicle, as well as an annual cost per depot. 

 

Table C2 

Electricity cost for landscaping (vehicle class 3) broken down by component and 

optimization type for the four rate structures simulated 

 NPV/vehicle Annual cost/depot 

Optimization 

and rate 

Demand 

charge 

Energy 

charge Fixed charge 

Demand 

charge 

Energy 

charge Fixed charge 

Unmanaged, 

PSEG RTP $160,913 $8,293 $21,844 $32,779 $1,689 $4,450 

Unmanaged, 

AC RTP $23,122 $4,764 $683 $4,710 $970 $139 

Unmanaged, 

PSEG TOU $107,931 $6,933 $0 $21,986 $1,412 $0 

Unmanaged, 

O&R TOU $30,971 $20,896 $1,885 $6,309 $4,257 $384 

Managed, 

PSEG RTP $22,438 $5,714 $21,844 $4,571 $1,164 $4,450 

Managed, AC 

RTP $2,549 $3,253 $683 $519 $663 $139 

Managed, 

PSEG TOU $15,113 $6,185 $0 $3,078 $1,260 $0 

Managed, 

O&R TOU $3,240 $6,492 $1,885 $660 $1,322 $384 

Mgd. w/ solar, 

PSEG RTP $15,878 $2,976 $21,844 $3,234 $606 $4,450 

Mgd. w/ solar, 

AC RTP $1,857 $1,779 $683 $378 $362 $139 

Mgd. w/ solar, 

PSEG TOU $11,553 $3,091 $0 $2,353 $630 $0 

Mgd. w/ solar, 

O&R TOU $2,085 $3,906 $1,885 $425 $796 $384 
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Table C3 

Electricity cost for food service (vehicle class 4) broken down by component and 

optimization type for the four rate structures simulated 

 NPV/vehicle Annual cost/depot 

Optimization 

and rate 

Demand 

charge 

Energy 

charge Fixed charge 

Demand 

charge 

Energy 

charge Fixed charge 

Unmanaged, 

PSEG RTP $107,156 $11,331 $10,922 $43,656 $4,616 $4,450 

Unmanaged, 

AC RTP $17,341 $7,162 $341 $7,065 $2,918 $139 

Unmanaged, 

PSEG TOU $80,948 $11,293 $0 $32,979 $4,601 $0 

Unmanaged, 

O&R TOU $23,229 $33,074 $943 $9,464 $13,475 $384 

Managed, 

PSEG RTP $25,963 $9,025 $10,922 $10,577 $3,677 $4,450 

Managed, AC 

RTP $3,361 $5,306 $341 $1,369 $2,162 $139 

Managed, 

PSEG TOU $17,371 $9,961 $0 $7,077 $4,058 $0 

Managed, 

O&R TOU $4,405 $13,770 $943 $1,795 $5,610 $384 

Mgd. w/ solar, 

PSEG RTP $16,842 $4,154 $10,922 $6,862 $1,693 $4,450 

Mgd. w/ solar, 

AC RTP $2,576 $2,304 $341 $1,050 $939 $139 

Mgd. w/ solar, 

PSEG TOU $12,417 $4,260 $0 $5,059 $1,735 $0 

Mgd. w/ solar, 

O&R TOU $2,658 $7,408 $943 $1,083 $3,018 $384 
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Table C4 

Electricity cost for wired telecom (vehicle class 5) broken down by component and 

optimization type for the four rate structures simulated 

 NPV/vehicle Annual cost/depot 

Optimization 

and rate 

Demand 

charge 

Energy 

charge Fixed charge 

Demand 

charge 

Energy 

charge Fixed charge 

Unmanaged, 

PSEG RTP $160,832 $16,557 $3,972 $180,192 $18,550 $4,450 

Unmanaged, 

AC RTP $21,020 $10,207 $124 $23,550 $11,435 $139 

Unmanaged, 

PSEG TOU $98,119 $15,736 $0 $109,930 $17,630 $0 

Unmanaged, 

O&R TOU $28,156 $44,494 $343 $31,545 $49,850 $384 

Managed, 

PSEG RTP $30,417 $15,447 $53 $34,079 $17,307 $59 

Managed, AC 

RTP $4,784 $7,444 $124 $5,359 $8,341 $139 

Managed, 

PSEG TOU $22,987 $14,792 $0 $25,754 $16,573 $0 

Managed, 

O&R TOU $6,366 $16,056 $343 $7,133 $17,989 $384 

Mgd. w/ solar, 

PSEG RTP $18,147 $6,485 $53 $20,332 $7,266 $59 

Mgd. w/ solar, 

AC RTP $2,614 $2,988 $124 $2,928 $3,347 $139 

Mgd. w/ solar, 

PSEG TOU $13,922 $5,995 $0 $15,598 $6,716 $0 

Mgd. w/ solar, 

O&R TOU $3,456 $6,589 $343 $3,872 $7,382 $384 
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Table C5 

Electricity cost for armored cars (vehicle class 6) broken down by component and 

optimization type for the four rate structures simulated 

 NPV/vehicle Annual cost/depot 

Optimization 

and rate 

Demand 

charge 

Energy 

charge Fixed charge 

Demand 

charge 

Energy 

charge Fixed charge 

Unmanaged, 

PSEG RTP $183,696 $22,349 $6,241 $130,969 $15,934 $4,450 

Unmanaged, 

AC RTP $29,728 $14,276 $195 $21,195 $10,179 $139 

Unmanaged, 

PSEG TOU $138,769 $21,136 $0 $98,937 $15,069 $0 

Unmanaged, 

O&R TOU $39,820 $64,390 $539 $28,391 $45,908 $384 

Managed, 

PSEG RTP $40,765 $19,953 $83 $29,064 $14,226 $59 

Managed, AC 

RTP $6,092 $10,053 $195 $4,343 $7,167 $139 

Managed, 

PSEG TOU $29,348 $18,892 $0 $20,924 $13,469 $0 

Managed, 

O&R TOU $8,112 $23,113 $539 $5,783 $16,479 $384 

Mgd. w/ solar, 

PSEG RTP $25,367 $9,771 $83 $18,086 $6,966 $59 

Mgd. w/ solar, 

AC RTP $3,654 $4,806 $195 $2,605 $3,426 $139 

Mgd. w/ solar, 

PSEG TOU $19,305 $9,452 $0 $13,764 $6,739 $0 

Mgd. w/ solar, 

O&R TOU $4,844 $11,125 $539 $3,454 $7,932 $384 
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Table C6 

Electricity cost for yard tractors (vehicle class 7) broken down by component and 

optimization type for the four rate structures simulated 

 NPV/vehicle Annual cost/depot 

Optimization 

and rate 

Demand 

charge 

Energy 

charge Fixed charge 

Demand 

charge 

Energy 

charge Fixed charge 

Unmanaged, 

PSEG RTP $214,312 $10,004 $21,844 $43,656 $2,038 $4,450 

Unmanaged, 

AC RTP $34,683 $7,321 $683 $7,065 $1,491 $139 

Unmanaged, 

PSEG TOU $161,897 $11,861 $0 $32,979 $2,416 $0 

Unmanaged, 

O&R TOU $46,457 $35,588 $1,885 $9,464 $7,250 $384 

Managed, 

PSEG RTP $38,505 $9,918 $21,844 $7,844 $2,020 $4,450 

Managed, AC 

RTP $4,113 $5,712 $683 $838 $1,164 $139 

Managed, 

PSEG TOU $22,576 $10,685 $0 $4,599 $2,177 $0 

Managed, 

O&R TOU $5,314 $15,934 $1,885 $1,083 $3,246 $384 

Mgd. w/ solar, 

PSEG RTP $13,330 $2,589 $21,844 $2,715 $527 $4,450 

Mgd. w/ solar, 

AC RTP $2,177 $1,423 $683 $443 $290 $139 

Mgd. w/ solar, 

PSEG TOU $9,535 $2,881 $0 $1,942 $587 $0 

Mgd. w/ solar, 

O&R TOU $3,608 $3,657 $1,885 $735 $745 $384 
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