Mary Jane Wilson

- Background and Experience
 - Education-Stanford University Petroleum Engineering
 - Business roles
 - Runs an energy and environmental consulting business
 - Distinguished Lecturer for SPE
 - Editor of Environmental Monograph for SPE
 - Testifying Expert on behalf of O&G companies
 - Governmental Advisory roles
 - Appt. by Congress to Review Naval Petroleum Reserve1
 - National Petroleum Council
 - Special Govt. Employee for Ultra-Deepwater Advisory Committee
 - Petroleum Technology Transfer Council

2014 Rulemaking for Oil and Gas

- WZI participated as a technical expert in this rule making at the request of EDF
- Summary of Key Findings:
 - CDPHE used accepted methodology:
 - In establishing the emission inventory
 - In assigning emissions reductions for proposed alternatives
 - In calculating the cost-effectiveness of program alternatives
- CDPHE cost estimates are reasonable and show program will be cost effective in reducing VOC and methane

LDAR

- Historically, LDAR has been in place in numerous facilities and air basins in various forms since the 8o's
- LDAR interfaces well with Planned Maintenance cycles which are focused on anticipating equipment failure and proactive maintenance
- LDAR programs in various forms have proven cost effective in reducing emissions
- Our opinion is that LDAR contributes to overall improvement of facility operations

CDPHE Proposed LDAR

- Tier-based approach results in sliding costs with lowest emitters bearing the least cost
- The CDPHE proposed reporting framework has a relatively minimal paperwork burden as compared to other LDAR programs
- The proposed LDAR program balances diminishing returns on emission reductions with industry costs

Louis Berger Group Program Economic Analysis: Key flaws

- Inflated Costs for:
 - LDAR
 - STEM
 - Flares
- Incorrect Methodology for cost effectiveness

Inflated Costs

- LDAR
 - LDAR equipment maintenance and training
 - Component Repair (10 times expected values)
 - Repaired Component Re-inspection (twice as high as complete facility inspections- done 12 times per year)
 - Findings are contrary to Economy-of-Scale expectations

Comparative Example-

Buffer Bottles as control devices

Separator

Buffer Bottle

Inflated Costs

- STEM
 - Buffer Bottle Capital Costs and Maintenance Costs are overstated
 - Similar errors as shown in prior LDAR discussion
- Flares
 - Inflated Costs
 - Useful life is understated
 - Overstated Maintenance Costs
- STEM and Flares are still cost effective regardless of overstatement of costs

Incorrect Methodology

- Berger developed a sliding emissions inventory yearto-year
- EPA cites the use of a fixed datum (baseline)
 - Baseline is established as a pre-rule inventory condition
 - Program effectiveness is tied to the pre-rule minus postrule emissions inventories
- Incremental reductions year-to-year simply underscore the degree of progress (trajectory) toward the final program control effectiveness
- Berger costs are skewed by levelized NPV calculations

Best Management Practices

- Best Management Practices for well maintenance such as swabbing and liquids unloading has been and will continue to be a general oil and gas industry practice.
- Examples:
 - When swabbing in a well, use temporary or permanent equipment to
 - Capture gas and send to gas treatment system or reinject
 - Flare gas to permanent or temporary flare
 - Limit unloading frequency and duration
 - Install lift equipment or automatic controls that reduces or eliminates the need for unloading
 - Correct problems with well completion and infrastructure

Conclusion

- CDPHE proposal is practical and applies common sense and reasonable approaches to control emissions from oil and gas operations
- Program is carefully tailored so that sites with fewer emissions have fewer requirements
- Program is cost effective
- Program will achieve large reductions in emissions