How do the EDF and ARPA-E projects on methane sensing relate to each other?

In the last month, two distinct projects have been announced dedicated to advancing the next generation of methane leakage detection technologies for use in the oil and gas industry, with an emphasis on achieving even more emission reductions at even less cost than today's effective approaches. This includes Environmental Defense Fund's (EDF) "Methane Detectors Challenge" and the "Methane Observation Networks with Innovative Technology to Obtain Reductions (MONITOR)," a program being led by the U.S. Department of Energy's Advanced Projects Research Agency-Energy (ARPA-E). Both projects are synergistic in helping to spur new technological solutions to reduce methane emissions from the production and transportation of oil and gas. EDF's competition targets relatively mature technologies that can be deployed in the next two years to detect larger leaks on a continuous basis. In contrast, ARPA-E's program targets a wider range of early-stage technologies that - with significant R&D – could become disruptive technologies capable of detecting a broad range of leak sizes in the next ten years. These projects complement each other in that both are expected to stimulate technology demonstration and development, build market demand for new detection approaches, and ultimately catalyze major emission reductions that will benefit the environment, public health and maximize resource utilization. Innovators are encouraged to investigate each opportunity, and apply for one or both. A table explaining how the EDF and ARPA-E programs compare is included below.

	EDF Methane Detectors Challenge	ARPA-E MONITOR Program
Industry applicability	Focused on emissions from well pads and	Focused on oil and gas systems from the
	associated equipment, and compressors	wellhead to the end-user
Technology stage	Relatively mature technologies ready for	Early stage technologies requiring
	testing in a controlled environment, and	substantial time and resources for
	able to be deployed in industrial settings	development to ensure reliable detection
	in the short run	for transformational improvements
Scope of detection	Limited to continuous detection	Open to continuous or periodic/mobile
	technologies, that provide a 24/7	approaches to detecting emissions
	approach to detecting leaks	
Leak size	Focused on large leaks; initial basic	Focused on a wide range of emissions
	requirements of 5 and 2.5 scfm for	including small leaks; threshold of 0.1
	detection, with preference for adaptive	scfm
	technologies and potential to detect	
	somewhat smaller leaks	
Information provided	Notification of methane emissions,	Reasonably accurate quantification of
	including rough indication of leak size;	methane emissions, in addition to leak
	leak location not required	location down to 1m precision
Timeline	Full proposals due June 17,2014; testing	Concept papers due June 13, 2014, Full
	begins summer 2014; industry pilots	application deadline TBD
	expected in 2015	
Funding type	Independent testing paid for by EDF;	Up to \$30M provided for development of
	industry pilot purchases expected; no	the technology, in increments between
	development awards anticipated	\$250,000 and \$10M per awardee
Market access	Many of the participating companies	Not applicable
	intend to make pilot purchases and trial	
	deployments of instruments that meet the	
	specifications	
Partnership	EDF partnering with five leading oil and	ARPA-E partnering directly with
	gas producers	innovators to help them develop their
		technologies; no industry partnership
		planned at this time