Demand Response Partnership Program

The Demand Response Partnership Program was created by USGBC and Environmental Defense Fund to:

→ Understand the relationship between commercial buildings and demand response

→ Drive adoption of Auto Demand Response (ADR) in commercial buildings

Who We Are

- → Generate and maintain interest in ADR across utility territories, states and national levels
- → Reveal customer responsiveness and perceived barriers to adopting ADR
- → Quantify economic, environmental & grid benefits delivered by ADR
- → Serve as a foundation to bring together utilities, service providers and customers to continue the transformative journey of ADR at the company, state and national levels

What is Demand Response?

"Changes in electric usage by end-use customers from their normal consumption patterns [...] when system reliability is jeopardized."

Federal Energy Regulatory Commission

Demand Response

- → Customer agrees ahead of time to shed noncritical load during times of peak demand
- → Keeps the grid stable during hot summer months, prevents rotating outages

- \rightarrow Limited number of energy-focused facility managers
- \rightarrow Lack of familiarity with utility DR programs
- \rightarrow Lack of specific knowledge around costs and benefits
- \rightarrow Perception that demand response is disruptive
- \rightarrow Concern over loss of control
- \rightarrow Concerns over ongoing operational changes

Driving Market Adoption

Market Adoption

LEED v2009

 \rightarrow Pilot Credit 8 for 1 point

LEED v4

 \rightarrow EA Credit for up to 3 points

LEED Credits

Credit Requirements

- \rightarrow Real-time, fully-automated demand response (ADR)
- → Minimum 1-year contractual commitment with intention of multi-year renewal
- → For the pilot credit: 10% or more of the estimated peak electricity demand (or a minimum of 20 kW, whichever is greater)
- → For the v4 credit: 10% or more of the estimated peak electricity demand

Performing Outreach

Outreach

Methodology

- \rightarrow USGBC & Skipping Stone perform initial outreach
- \rightarrow Target LEED registered and certified buildings

Multi-Pronged Approach

- \rightarrow Emails, phone calls, in-person meetings
- \rightarrow Webcasts, press releases
- \rightarrow USGBC chapter resources

Outreach

Outcomes

- → 572 buildings representing 275 million sq ft selected for initial outreach
- → 133 buildings (51 million sq ft) enrolled, evaluating enrollment, or are DR ready

Performing Research

Key Characteristics

- → Led by Environmental Defense Fund and Lawrence Berkeley National Lab
- \rightarrow Work directly with utility sponsors to obtain data
- \rightarrow Technical papers and case studies

The Data

- \rightarrow Building electric load
- \rightarrow Weather
- \rightarrow Emissions from generation resources
- \rightarrow Customer survey responses

Over 3 million sq ft of Class A office space in the pipeline

The Questions

- → Consumer energy use behavior and barriers to participation
- → Performance assessment and estimation in commercial buildings
- \rightarrow Establishing baselines and peak load benchmarking
- \rightarrow Customer financial analysis and cost-effectiveness
- → System-wide impacts, including environmental and reliability impacts

Why does EDF care about smart grid?

- \rightarrow Least-cost best fit
- \rightarrow Clean Air Act rules for existing power plants
- \rightarrow Getting to 33% RPS in California
- → Integrating distributed intermittent energy resources and electric vehicles
- \rightarrow Time-of-Use residential rates
- \rightarrow Consumer empowerment
- \rightarrow Environmental outcomes

DRPP Research Hypotheses - Environmental

- \rightarrow DR is least-cost and best fit for:
 - \rightarrow peak load management
 - → Integrating intermittent renewable resources & electric vehicles
- → DR can provide significant environmental benefits shifting demand to off-peak with cleaner generation mix

Approximately one third of the power grid load is attributable to the commercial building community.

(Source: U.S. Energy Information Administration)

Fuel Mix for U.S. Electricity

Source: http://www.epa.gov/cleanenergy/energy-and-you/index.html

Sample Emissions Calculation

http://oaspub.epa.gov/powpro/ept_pack.router

- **17** pounds of <u>nitrogen oxides</u>
- 75 pounds of sulfur dioxide
- **19,314** pounds of <u>carbon dioxide</u>

Note: Your annual emissions include a grid region specific adjustment for line losses of 5.82 percent

Peak Load Fuel Mix

California ISO Generation Mix July 25, 2013 (1 hour increments)

og arwatts

California ISO Renewables Mix July 25, 2013 (1 hour increments)

Hourly Average Breakdown of Renewable Resources

Measuring & Valuing Environmental Benefits of DRRP

Next Steps

 \rightarrow Calculate generation mix **emissions intensities**

 \rightarrow Calculate benefits from load shifts and conservation

How can we quantify potential benefits of DR?

Increasing Interactions with Grid (OpenADR & Smart Grid)

Increasing Speed of Telemetry

Key Building Characteristics

- \rightarrow Building systems
- \rightarrow Building size
- \rightarrow Building type (e.g., office, retail, cold storage, etc.)
- \rightarrow Occupancy schedule
- \rightarrow Load characterization peak load time and magnitude
- \rightarrow Load variability
- \rightarrow Weather sensitivity

What metrics are most useful to prioritize DR enablement of buildings?

- \rightarrow Response time
- \rightarrow Reliable load reductions
- \rightarrow Reduce load while maintaining comfort

Each of these is influenced by properties of building systems and occupancy.

Demand Response Database

- \rightarrow Distinctions made according to
 - \rightarrow Building location
 - \rightarrow DR program
 - \rightarrow Building type
 - \rightarrow Building Size
 - \rightarrow DR strategies
- → Analysis tool to identify load variability between days, weather sensitivity of loads, load ranges and load shed in response to DR events over time
- \rightarrow Choice of baseline development options

Demand Response Metrics

- → Load shed (kW)- historically most reported figure of merit but lacks context
- \rightarrow Peak load timing (compared with the timing of DR event)

Relevant Metrics

- \rightarrow W/sq. ft .
- \rightarrow Whole Facility Power % (WFP%)
- \rightarrow Peak Load Benchmarking (magnitude & timing)
- \rightarrow DR Enablement Costs (\$/kW)

Date	Baseline	Period	kW			W/ft ²			WFP%		
			Min	Max	Avg	Min	Max	Avg	Min	Max	Avg
2013-07- 09	10/10 baseline	16:00:00 - 17:00:00	45	91	77	0.45	0.91	0.77	4.9	9.9	8.4
		17:00:00 - 18:00:00	76	84	80	0.76	0.84	0.8	8.7	9.7	9.1
		16:00:00 - 18:00:00	45	91	78	0.45	0.91	0.78	4.9	9.9	8.7
	20 day OAT Reg	16:00:00 - 17:00:00	38	84	68	0.38	0.84	0.68	4.1	9.1	7.5
		17:00:00 - 18:00:00	64	75	69	0.64	0.75	0.69	7.5	8.7	8
		16:00:00 - 18:00:00	38	84	69	0.38	0.84	0.69	4.1	9.1	7.7

Preliminary Findings

- → Effective Demand Response strategies can lead to load sheds, from 5% to 18% (WFP%).
- → Load size does not make a stronger case for high demand response effectiveness.
- → Load shapes in response to outside air temperature can be a good predictor to determine potential load sheds in buildings.

Jamie Fine, Environmental Defense Fund jfine@edf.org

Ella Sung, Lawrence Berkeley National Lab hsung@lbl.gov

Heather Langford, USGBC hlangford@usgbc.org

Who We Are

