Mary Jane Wilson

- **Background and Experience**
 - Education: Stanford University Petroleum Engineering
 - Business roles
 - Runs an energy and environmental consulting business
 - Distinguished Lecturer for SPE
 - Editor of Environmental Monograph for SPE
 - Testifying Expert on behalf of O&G companies
 - Governmental Advisory roles
 - Appt. by Congress to Review Naval Petroleum Reserve
 - National Petroleum Council
 - Special Govt. Employee for Ultra-Deepwater Advisory Committee
 - Petroleum Technology Transfer Council
2014 Rulemaking for Oil and Gas

- WZI participated as a technical expert in this rule making at the request of EDF

Summary of Key Findings:
- CDPHE used accepted methodology:
 - In establishing the emission inventory
 - In assigning emissions reductions for proposed alternatives
 - In calculating the cost-effectiveness of program alternatives
- CDPHE cost estimates are reasonable and show program will be cost effective in reducing VOC and methane
LDAR

- Historically, LDAR has been in place in numerous facilities and air basins in various forms since the 80’s
- LDAR interfaces well with Planned Maintenance cycles which are focused on anticipating equipment failure and proactive maintenance
- LDAR programs in various forms have proven cost effective in reducing emissions
- Our opinion is that LDAR contributes to overall improvement of facility operations
CDPHE Proposed LDAR

- Tier-based approach results in sliding costs with lowest emitters bearing the least cost
- The CDPHE proposed reporting framework has a relatively minimal paperwork burden as compared to other LDAR programs
- The proposed LDAR program balances diminishing returns on emission reductions with industry costs
Louis Berger Group Program Economic Analysis: Key flaws

- Inflated Costs for:
 - LDAR
 - STEM
 - Flares

- Incorrect Methodology for cost effectiveness
Inflated Costs

- **LDAR**
 - LDAR equipment maintenance and training
 - Component Repair (10 times expected values)
 - Repaired Component Re-inspection (twice as high as complete facility inspections - done 12 times per year)
 - Findings are contrary to Economy-of-Scale expectations
Comparative Example -

LDAR Cost Estimate
per 50 TPY Well Production Facility
In Non-Attainment Areas

Berger Initial Year
Facility Components Surveyed: 592
Facility Component Repairs: 10

Berger
Division
Noble Actual Costs
Anadarko Actual Costs

$17,250 $15,851 $27,248 $60,350
$7,870 $9,408 $2,725/leak
$5,183 $1,563 27m-hrs @$100/m-hr
$1,585/leak
16 m-hrs @100/m-hr

$9,433 $5,183 $9,408

Inspection (includes capital costs) Repair Re-inspection Total
Buffer Bottles as control devices

Separator

Buffer Bottle
Inflated Costs

- **STEM**
 - Buffer Bottle Capital Costs and Maintenance Costs are overstated
 - Similar errors as shown in prior LDAR discussion
- **Flares**
 - Inflated Costs
 - Useful life is understated
 - Overstated Maintenance Costs
- **STEM and Flares are still cost effective regardless of overstatement of costs**
Incorrect Methodology

- Berger developed a sliding emissions inventory year-to-year
- EPA cites the use of a fixed datum (baseline)
 - Baseline is established as a pre-rule inventory condition
 - Program effectiveness is tied to the pre-rule minus post-rule emissions inventories
- Incremental reductions year-to-year simply underscore the degree of progress (trajectory) toward the final program control effectiveness
- Berger costs are skewed by levelized NPV calculations
Best Management Practices

- Best Management Practices for well maintenance such as swabbing and liquids unloading has been and will continue to be a general oil and gas industry practice.

Examples:
- When swabbing in a well, use temporary or permanent equipment to
 - Capture gas and send to gas treatment system or reinject
 - Flare gas to permanent or temporary flare
- Limit unloading frequency and duration
- Install lift equipment or automatic controls that reduces or eliminates the need for unloading
- Correct problems with well completion and infrastructure
Conclusion

- CDPHE proposal is practical and applies common sense and reasonable approaches to control emissions from oil and gas operations
- Program is carefully tailored so that sites with fewer emissions have fewer requirements
- Program is cost effective
- Program will achieve large reductions in emissions