Attachment 11

Declaration of Dr. Ilissa B. Ocko, Environmental Defense Fund
DECLARATION OF DR. ILISSA B. OCKO

I, Ilissa B. Ocko, declare as follows:

1. I am a Senior Climate Scientist at the Environmental Defense Fund (“EDF”). I earned a Ph.D. in Atmospheric and Oceanic Science from Princeton University, where I studied the impact of human-emitted greenhouse gases (including methane) and aerosols on Earth’s radiative balance and the climate using observational and global climate model-derived datasets. I have written several peer-reviewed papers on the impacts of short-lived climate pollutants on radiative forcing, air temperature, hydrological patterns, and atmospheric and oceanic circulation. My curriculum vitae is attached as Attachment A.

2. I joined EDF in 2013. At EDF, my work focuses on analyzing the temperature impacts of various human-related activities and climate change mitigation strategies. I use all forms of analytical tools to evaluate climate effects, and I lead an effort to improve simple metrics (i.e. Global Warming Potential) to make clearer the near- and longer-term impacts associated with different types of greenhouse gas emissions.\(^1\) I work with scientists, government agencies, industries, and nonprofits to advance this effort. I specifically aim to enhance public

understanding of climate impacts over all timescales, both near- and long-term.

3. Methane is a considerable driver of near-term climate change, responsible for a quarter of the warming we are experiencing today.\(^2\) This year’s emissions of methane from human activities will contribute 30% more to warming over the next 10 years than this year’s emissions of carbon dioxide from fossil fuels.\(^3\) Globally, a quarter of human-emitted methane comes from the oil and gas

sector, and current trends suggest that methane from global oil and gas may soon overtake livestock as the dominant source from human activities. Domestically, the EPA recognizes that the oil and gas sector is the largest industrial source of methane emissions in the United States, accounting for nearly one-third of U.S. methane emissions. However, the actual amount of emissions is almost certainly higher, as studies show the EPA underestimates methane emissions from the oil and natural gas sector by approximately sixty percent. My research includes determining the impacts that methane emission reductions will have on slowing the rate of global warming. Of all methane sources from human activities, reducing waste of gas from oil and gas operations—whether that waste is through venting, flaring, or leaking—presents an important opportunity considering its cost-

effectiveness, technological availability, and immediate impacts on climate.

4. For the same mass of carbon dioxide ("CO2") and methane emissions, methane can trap 120 times more heat than CO2, both directly from methane as a greenhouse gas and indirectly from the production of further greenhouse gases: tropospheric ozone, stratospheric water vapor, and CO2.\(^8\) Over a twenty-year period, this number drops to 84 as methane dissipates from the atmosphere more quickly than CO2.\(^9\) The latest science suggests that methane absorbing shortwave radiation in addition to longwave significantly increases its radiative potency by nearly 25\%.\(^{10}\) Including the shortwave component in calculations, the twenty-year number jumps from 84 to 96.

5. Further, through the creation of tropospheric ozone, methane contributes to ground-level ozone, which is harmful to humans and is linked to short- and long-term negative health effects, including shortness of breath, decreased lung function, and chronic obstructive pulmonary disease ("COPD"). Ozone also aggravates existing cardiovascular and respiratory conditions, such as

\(^8\) IPCC AR5 2013, Myhre, Gunnar et al., *Anthropogenic and Natural Radiative Forcing*, available at https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_Chapter08_FINAL.pdf

\(^9\) Id.

asthma, emphysema, and bronchitis, with long-term exposure increasing the risk of death from these conditions. As nearly one in three Americans are exposed to harmful levels of ozone, reducing methane emissions would directly enhance human health while improving air quality and mitigating climate change.

6. Methane only lasts for approximately a decade in the atmosphere (though its effects can last much longer), because it is oxidized on average after 12.4 years, breaking down and forming other chemical species. Methane reductions, therefore, can rapidly slow the rate of warming. Even though methane forms tropospheric ozone, another strong greenhouse gas, when it oxidizes, the

12 Id. at 512.

13 For example, as discussed below, oceans absorb 90% of the excess heat trapped by greenhouse gases. Therefore, even though the methane is gone and no longer trapping additional heat in the atmosphere, the warming that it had caused is now in the oceans, contributing to sea level rise decades to come. Hu, A., Xu, Y., Tebaldi, C., Washington, W.M. and Ramanathan, V., *Mitigation of short-lived climate pollutants slows sea-level rise*, 3 NATURE CLIMATE CHANGE 730 (2013).

ozone does not last long in the atmosphere, contributing to the immediacy of the climate benefits of reduced methane.

7. It is crucial to limit both the rate of near-term warming and long-term warming, in order to reduce warming impacts during our lifetimes and for generations to come. Both near-term and long-term warming are associated with specific sets of damages, and all must be reduced. Near-term warming impacts infrastructure, plant and animal species survival rates, extreme events, sea level rise, when we cross tipping point thresholds, and the ability to adapt to a changing environment. Long-term warming impacts glacial melt, permafrost melt, shifts in biomes, ocean circulation, and more. Carbon dioxide is the main driver of long-term warming because of its long atmospheric lifetime. Methane emissions are an important driver of near-term warming, and so taking immediate steps to reduce methane emissions can help to immediately lower warming rates. Conversely,

17 Hu et al., *supra* note 13.

18 Myhre et al., *supra* note 8.

19 Shindell et al., *supra* note 15.
allowing methane emissions to increase will accelerate this harmful warming.20

8. Warming to date has already negatively impacted every continent and every ocean,21 and resulted in tropical island villages disappearing,22 Arctic buildings and villages relocating,23 coral reefs dissolving and dying,24 mosquito seasons growing weeks longer,25 and worsened extreme heat events yielding high death tolls.26 Increasing methane emissions will result in more pronounced impacts

20 Id.

25 Id.

in the future. Further warming also enhances the risk that the climate surpasses irreversible tipping points that could render long-term climate stabilization difficult or impossible.27 Immediate methane reductions can therefore also mitigate long-term warming and make it easier to stabilize global warming below 1.5 °C.28 But inaction may cause permanent damage or irreversible impacts for thousands of years.29

9. Reducing emissions of methane will also help to limit sea level rise. Ninety percent of heat that is trapped in the atmosphere gets absorbed by the oceans.30 While methane only lasts for about a decade in the atmosphere, a

29 Reidmiller, \textit{supra} note 11 at 1357.

substantial fraction of the atmospheric heating that methane causes during this period is absorbed by the oceans, where the warming signal lasts far longer than in the atmosphere. Accordingly, near-term methane emissions can cause sea level rise for decades to come.31

10. I am aware that in 2016, the Environmental Protection Agency (“EPA”) promulgated standards to reduce methane emissions at new and modified facilities in the oil and gas sector. \textit{Oil and Natural Gas Sector Emission Standards for New, Reconstructed and Modified Sources}, 81 Fed. Reg. 35,824 (June 3, 2016) (‘New Source Rule’). The standards reduced methane emissions by requiring regular leak detection and repair (‘LDAR’) and equipment upgrades at covered facilities in oil and natural gas production, processing, and transmission and storage segments. The New Source Rule had been fully in effect and securing reductions in methane at new and modified facilities for over four years. In addition, I understand that the promulgation of the New Source Rule triggered a legal obligation under Section 111(d) of the Clean Air Act, 42 U.S.C. § 7411(d), for EPA to issue emissions guidelines for existing sources (‘Methane Guidelines’), but that EPA never issued such guidelines.

11. I am aware that in September 2020 EPA finalized a rule which rescinded key elements of the New Source Rule. \textit{Oil and Natural Gas Sector}:
Emission Standards for New, Reconstructed, and Modified Sources Review, 85 Fed. Reg. 57,018 (Sept. 14, 2020) (‘Rescission Rule’). This action removed the transmission and storage segments from the source category regulated by EPA, such that the performance standards to control emissions of methane and volatile organic compounds (VOCs) no longer apply to those sources, and removed the performance standards related to methane emissions for covered facilities in the oil and natural gas production and processing segments. In doing so, EPA also found that it had removed the legal obligation to regulate emissions of methane from existing sources in these segments.

12. I understand that in the four years since EPA issued the New Source Rule, existing oil and gas sources have emitted 33.4 million metric tons of methane.\(^{32}\) This is equivalent to the 20-year\(^{33}\) climate impact of nearly 600 million passenger vehicles driving for one year or over 3,000 billion pounds of coal burned. I further understand that federal emissions guidelines could have prevented 12.2 million metric tons of these methane emissions,\(^ {34}\) equivalent to the climate impact

\(^{33}\) Calculation uses the IPCC AR5 WGI 20-year GWP. The latest science, see note 10, supra, suggests that this GWP is 14% higher than what is reported in the IPCC and therefore the number of vehicles would be over 680 million and the number of pounds of coal burned would be over 3,500 billion.

\(^{34}\) McVay-Hull-Roberts Decl. tbl. 6.
of over 200 million passenger vehicles driving for one year or over 1,000 billion pounds of coal burned. I also understand that if EPA fails to promulgate existing source methane guidelines in April 2023 due to a delay associated with this litigation, over the following 12 months (April 2023-April 2024) over 3 million metric tons of methane would be emitted from existing sources. This is equivalent to the 20-year climate impact of nearly 50 million passenger vehicles driving for one year or over 250 billion pounds of coal burned.

13. I further understand that each additional year EPA does not adopt federal emissions guidelines for existing sources, which EPA argues it is now precluded from adopting, will allow the continued release of preventable methane emissions. For example, in 2021, existing sources will emit 9.8 million metric tons of methane. This is equivalent to the 20-year climate impact of over 170 million

35 Updated for the latest science, see note 10, supra, the number of vehicles would be nearly 250 million and the number of pounds of coal burned would be over 1,200 billion.

36 McVay-Hull-Roberts Decl. ¶35.

37 Updated for the latest science, see note 10, supra, the number of vehicles would be nearly 250 million and the number of pounds of coal burned would be over 1,200 billion.

38 McVay-Hull-Roberts Decl. tbl. 6.

39 Updated for the latest science, see note 10, supra, the number of vehicles would be nearly 200 million and the number of pounds of coal burned would be over 1 trillion.
passenger vehicles driving for one year or nearly 900 billion pounds of coal burned. Federal emissions guidelines could have prevented 3.6 million metric tons of these methane emissions,\footnote{40} equivalent to the climate impact of over 60 million passenger vehicles driving for one year or over 330 billion pounds of coal burned.\footnote{41} Once released, methane emissions cannot be removed from the atmosphere and will contribute to both near- and longer-term climate damages, including impacts associated with an increased rate of warming, sea level rise, and others.

14. I further understand that by removing the transmission and storage segments from the regulated source category, new and modified sources in these segments will emit additional, preventable methane emissions. For example, in 2021 under the Rescission Rule, new and modified transmission and storage sources will emit more than 290,000 metric tons of methane that would have not been emitted under the New Source Rule.\footnote{42} This is equivalent to the 20-year\footnote{43} climate impact of over 5 million passenger vehicles driving for one year or over 25 billion pounds of

\footnote{40} McVay-Hull-Roberts Decl. tbl. 6.

\footnote{41} Updated for the latest science, see note 10, supra, the number of vehicles would be over 70 million and the number of pounds of coal burned would be over 370 billion.

\footnote{42} McVay-Hull-Roberts Decl. tbl. 2.

\footnote{43} Updated for the latest science, see note 10, supra, the number of vehicles would be over 6 million and the number of pounds of coal burned would be over 30 billion.
coal burned.

I declare that the foregoing is true and correct.

Ilissa B. Ocko

Dated September 15, 2020.
Attachment A
ILISSA OCKO
SENIOR CLIMATE SCIENTIST
ENVIRONMENTAL DEFENSE FUND

Email: iocko@edf.org | Phone: 212-616-1228 | Website: ilissaocko.com

CURRENT POSITION
2019—Senior Climate Scientist, Environmental Defense Fund (EDF), Washington, DC
Lead climate science team, pursue research on the impact of short-lived climate pollutants and their mitigation on near- and long-term warming, work with policy experts, economists, lawyers, and communication specialists

PAST POSITIONS HELD
2015-2019 Climate Scientist, EDF, Washington, DC & New York, NY
Pursued climate science research, supported climate science communication

2014-2015 Kravis Postdoctoral Science Fellow (with Dr. Steven Hamburg), EDF, New York, NY
Conducted research on short-lived climate pollutant mitigation strategies

2013-2014 High Meadows Postdoctoral Fellow (with Dr. Steven Hamburg), EDF, New York, NY
Framed EDF’s long-term climate vision and convened expert workshops

2012-2013 Research Assistant (with Dr. V Ramaswamy), Princeton University
Studied aerosol radiative forcings and climate responses using climate models

2009-2012 NSF Graduate Research Fellow (with Dr. V Ramaswamy), Princeton University
Studied aerosol radiative forcings and climate responses using climate models

2008-2009 AMS Industry/Gov’t Graduate Fellow (with Dr. V Ramaswamy), Princeton University
Studied transport of aerosols to the Arctic

2007-2008 Research Assistant (with Dr. Christiane Jablonowski), University of Michigan
Analyzed how small-scale atmospheric eddies interact with large-scale circulation

2007 NOAA Hollings Scholar (with Taneil Uttal), NOAA ESRL, Boulder, CO
Researched historical air-flow patterns for Arctic locations using HYSPLIT model

2006-2007 Research Assistant (with Dr. Mary Anne Carroll), University of Michigan
Explored the linkage between ozone levels and air flow in northern Michigan

2006 Field Researcher (with Drs. Perry Samson & Robert Clauer), Greenland
Set up instruments to measure atmospheric conditions in Greenland locations

2006 REU Participant (with Dr. Mary Anne Carroll), UMBS, Pellston, MI
Examined the climatology of northern Michigan to determine pollution exposure

2005-2006 Research Assistant (with Dr. Daniel C. Fisher), Undergrad Research Opp. Program, UM
Casted models of mastodon skeletons and pieced together excavated tusks

EDUCATION
Ph.D. Atmospheric & Oceanic Sciences, Princeton University, 2013
M.A. Atmospheric & Oceanic Sciences, Princeton University, 2010
B.S.E Earth System Science & Engineering, magna cum laude, University of Michigan, 2008
SERVICE ACTIVITIES

2017-2018 **Founder**, Good Climate News, @goodclimatenews
Managed a Twitter account that collated all of the good climate change news

2016-2017 **Founder**, @theclimatepicture
Managed and developed daily original climate infographics for social media (Instagram)

2016 **Climate Science Consultant**, UCAR Center for Science Education
Provided guidance and content for climate change exhibit

2016 **Participant**, American Geophysical Union Sharing Science Advisory Board

2015 **Co-convener**, Climate Science is a Cross-Disciplinary Challenge, AGU Fall Meeting Session

2015— **Reviewer**, Climate Feedback
Review the scientific integrity of climate change media articles

2015 **Contributor**, More Than Scientists
Contributed several videos with 15-30 second climate change snippets

2014-2018 **Speaker**, Climate Voices
Speak with different local communities about climate change causes, impacts, solutions

2011— **Science Graphic Designer**, freelance
Develop science infographics to for blogs, research articles, news stories
Select clients: Stanford University, Princeton University, Climate Central

2009-2010 **Conference Organizer**, High Meadows, Princeton University
Co-organized a daylong environmental sustainability conference for students and public

2007-2008 **Chief Meteorologist**, WOLV-TV, University of Michigan
Managed weather anchors of student-run television network news program

2006-2008 **Weather Anchor**, WOLV-TV, University of Michigan
Forecasted and broadcasted weather on student-run television network news program

PROFESSIONAL ASSOCIATIONS

Union of Concerned Scientists
Climate Access
Earth Science Women’s Network
American Meteorological Society
American Geophysical Union

CERTIFICATES

Co-authored climate change mitigation strategies report for U.S. DOE and EPA, attended 22nd UN Montreal Protocol Meeting, wrote policy memos/reports, researched how climate metrics impact policy

Arctic Climate Change Certificate, Summer School, University Centre in Svalbard, Svalbard, 2009

Physics of the Climate System Certificate, Summer School, Utrecht Univ., Utrecht, Netherlands, 2008
HONORS AND AWARDS

Streisand Chair in Environmental Studies, EDF 2018
Finalist, International FameLab Competition, Cheltenham UK 2016
Winner & Audience Favorite, NASA FameLab USA Finals, Washington DC 2016
Winner & Audience Favorite, NASA FameLab USA Semi-Finals, San Francisco CA 2015
Wildcard, NASA FameLab Regional Heat, San Francisco CA 2014
Aspen Ideas Festival Scholar, Aspen Ideas Festival, Aspen CO 2014
Emerging Alumni Scholars Award, Princeton University—given to three graduate students 2013
Award for Outstanding Poster Presentation, World Climate Research Programme 2011
Outstanding Student Poster Presentation, American Meteorological Society (AMS) 2011
National Science Foundation Graduate Research Fellowship 2009-2012
AMS Industry/Government Graduate Fellowship, NOAA Climate Program Office 2008-2009
Order of Omega National Honor Society 2008
First Place Winner, UM Best Student Paper on Environmental Issues & Climate Change 2007
Weather Underground Inc. Scholarship, AOSS Department, Univ. of Michigan 2007
Delta Epsilon Iota Academic Honor Society 2007
Eliza Ann Roark Scholarship, Chi Omega Fraternity, Univ. of Michigan 2006
Marian Sarah Parker Scholarship, College of Engineering, Univ. of Michigan 2006-2008
Ernest F. Hollings Scholarship, National Oceanic and Atmospheric Administration 2006-2008

PUBLICATIONS

Ocko, IB, D Shindell, M Oppenheimer, A Hristov, SW Pacala, D Mauzerall, Y Xu, and SP Hamburg: Methane mitigation: an achievable lever to limit warming in near- and long-term, in prep

Ivanovich, CC, IB Ocko, D Gordon: Surpassing 2 °C from Diet Alone, in prep

Ivanovich, CC, IB Ocko, P Piris-Cabezas, and A Petsonk: Climate benefits of proposed carbon dioxide mitigation strategies for international shipping and aviation, Atmospheric Chemistry and Physics, 19(23), 14949-14965 (2019)

PRESENTATIONS

Ocko, IB, Balancing short- and long-lived climate pollutant mitigation: Clearer metrics are critical, 6th World Congress of Environmental and Resource Economists, Gothenburg, Sweden (2018)

Ocko, IB, How to be more attractive... when communicating science, invited, AGU Fall Meeting, San Francisco, CA (2015)

Ocko, IV, Contrasting Climate Responses of Absorbing and Scattering Aerosol Radiative Forcings, Stony Brook University, School of Marine and Atmospheric Sciences, Department Seminar (2015)

Ocko, IB, V Ramaswamy, Climate responses to gases and aerosols from 1860 to 2000, AGU Fall Meeting, San Francisco, CA (2012)

Ocko, IB, V Ramaswamy, Offseting roles that black carbon and sulfate play in climate change, Princeton Graduate Student Symposium, Princeton, NJ (2011)

Ocko, IB, V Ramaswamy, Offseting roles that black carbon and sulfate play in climate change, World Climate Research Program Open Science Conference, Denver, CO (2011)

Ocko, IB, V Ramaswamy, Offsetting and complementary characteristics of sulfate and soot direct radiative forcings, 90th Annual AMS Meeting, Seattle, WA (2011)

OUTREACH

Montgomery College, Frank Islam Athenaeum Symposia speaker, Climate change: What is happening and what can we do about it?, Germantown MD, April 24 2018

St. Paul’s School for Girls, Zee Fambrough Science Speaker Series, Climate change and classroom and assembly speaker, Brooklandville MD, March 7 2018

North Carolina State University, How scientists can create better visuals for more effective science communication, Coffee & Viz, training workshop, Raleigh NC, March 1 2018
Science Improv, Climate Change, invited guest speaker, Washington DC, September 15 2017
Washington DC Taste of Science festival, Wait Wait...Global Climate Change?, volunteer content developer, April 28 2017
Climate Corps Professional Development Webinar Series, Climate Change: What The Science Really Says About Skeptic Arguments, invited presenter, April 4 2017
Alpha Kappa Alpha Sorority, Global Climate Change: Causes, Impacts, Solutions, invited speaker, Suitland MD, March 4 2017
Old Bridge Public Library, Inquire Science Series, invited speaker, Old Bridge NJ, July 31 2016
Georgetown University, Mathematics and Climate Change, guest lecturer, July 27 2016
Ignite Talks, Cooking Shouldn’t Kill, San Francisco CA, December 16 2015
AGU Fall Meeting, Sharing Science in Plain English panel, invited panelist, San Francisco CA, December 15 2015
Saddle River Day School, School Assembly, invited speaker, Saddle River NJ, December 2 2015
Clearwater’s Great Hudson River Revival, Climate Change is here; Climate Change is now, invited speaker, Croton-on-Hudson, NY, June 20-21 2015
Trinity Episcopal, GreenFaith Day, speaking with husband about climate change, April 26 2015
KidSpirit Table Talk, Climate Change: Tending Our Planet, invited panelist, “What we know about the science of climate change,” New York, NY, April 19 2015
Miller’s Run School, 8th Grade classroom, Teacher Patricia Norsworthy, “Climate Change: Causes, Impacts, Solutions,” January 22 2015
American Meteorological Society Student Conference, Annual Meeting, “Experiences Beyond the Classroom,” “Getting the word out: Science Policy and Communication,” invited panelist, January 3 2015
Rutgers University, SEBS International Programs, Career Panel, invited panelist, November 14 2014
Princeton University, Atmospheric and Oceanic Sciences, Student Seminar, invited speaker, "Bridging Science and Advocacy as a Career,” October 23 2014
Wells Fargo, Overview of Intergovernmental Panel on Climate Change 2013/2014 reports, May 8 2014
Watkinson High School, 9th Grade classroom, Teacher Jennifer O’Brien “A young climate scientist’s professional journey,” February 21 2014
Rutgers University, SEBS International Programs, Career Panel, invited panelist, November 8 2013

MEDIA

Radio/TV interviews: CTV, KPFA Berkeley, Radio Free Asia, and Circa. 2018
DC’s Panorama, The Block is Hot! Climate Change is Not, invited panelist, television show, August 2 2017
POTUS 2017 with Brian Lehrer, CUNY TV, Evidence Based Politics, invited guest, June 7 2017
Thomson Reuters TV, television interview, November 22 2016

KXRY-FM in Portland, OR, invited guest, radio interview, “Hope for the Climate,” December 24 2014

BLOG POSTS

Record-warm oceans: How worried should we be? February 22 2019 | EDF Voices

How can half a degree of warming matter so much? October 18 2018 | EDF Voices

UN Special Report confirms urgent need to reduce methane emissions, October 11 2018 | Energy Exchange

Hansen was right: Marking an anniversary by misleading the public, July 18 2018 | Climate411

New science suggests methane packs more warming power than previously thought, February 7 2018 | Energy Exchange

Natural disasters are no longer purely natural, January 16 2018 | Climate411

It’s now, it’s us, it’s not over – the top 7 takeaways from the new climate change report, November 15 2017 | Climate411

The Clean Power Plan’s enormous climate benefits – in one graphic, October 10 2017 | Climate411

Puerto Rico a tragic reminder of why climate action cannot wait, October 3 2017 | Climate411

As a non-political scientist I don’t march – until now, April 25 2017 | EDF Voices

Take these first steps to lower your impact on climate change, April 21 2017 | Climate411

How Do We Know That Humans Are Causing Climate Change? These Nine Lines of Evidence, March 23 2017 | Climate411

Brutal Southeast fire season may not be freak event. That’s why taxpayers should care, December 8 2016 | EDF Voices

Climate change is messing with clouds – and it’s a really big deal, August 24 2016 | EDF Voices

The Impacts of Climate Change on Human Health – a Sobering New Report, April 5 2016 | Climate411

3 reasons the Zika outbreak may be linked to climate change, February 16 2016 | EDF Voices

Human emissions just cancelled the next ice age. Here’s why we should care, February 11 2016 | EDF Voices

Why we can’t blame El Niño for the hottest year on record, January 5 2016 | EDF Voices

Scientist fact-checkers join new push to call out climate errors in news media, December 10 2015 | EDF Voices
9 million acres and counting: Will wildfires keep spreading with climate change?, September 30, 2015 | EDF Voices
Why a "Godzilla" El Niño won't end California's drought, August 27 2015 | EDF Voices
Methane and CO2: Why climate action means addressing both, August 12 2015 | EDF Voices
Sobering climate science: Extreme weather on the rise, July 23 2015 | EDF Voices
6 climate tipping points: How worried should we be?, May 28 2015 | EDF Voices
On El Niño, snowballs and real climate science, March 6 2015 | EDF Voices
Giant pandas face greatest threat yet: A hotter world, February 4 2015 | EDF Voices
This is how climate scientists should talk, December 17 2014 | EDF Voices
Climate hope amid melting ice, rising temps, December 10 2014 | EDF Voices
Why California thirsts for rain and the East Coast gets soaked, October 14 2014 | EDF Voices
How scientists linked the California drought to climate change, October 2 2014 | EDF Voices
Why "slowed" global warming is not what it seems, September 16 2014 | EDF Voices
Why those huge craters in Siberia are a climate wake-up call, August 11 2014 | EDF Voices
Why offshore wind energy should be on our radar, August 6 2014 | Global CCS Institute (Decarboni.se)
Moral Optimism of Climate Change, July 23 2014 | Global CCS Institute (Decarboni.se)
Bundle up, the polar vortex returns - but is it climate change?, July 15 2014 | EDF Voices
Taking the Earth’s Historical Temperature, July 4 2014 | The Toast
Study: Climate change may push hurricanes farther north, south, June 2 2014 | EDF Voices
Crafting Your Own Visuals for Science Communication: Part I, May 7 2014 | The Plainspoken Scientist
New report: How climate change is impacting where you live, May 6 2014 | EDF Voices
Top takeaways from the latest IPCC report, April 14 2014 | EDF Voices
6 key insights from the latest IPCC climate report, March 31 2014 | EDF Voices
Crafting Your Own Visuals for Science Communication: Part II, May 22 2014 | The Plainspoken Scientist
Four reasons why the climate is still changing, despite the cold, March 18 2014 | EDF Voices
How an EDF scientist explains climate change in 30 seconds, March 13 2014 | EDF Voices
Why your car is covered with an inch of ice, instead of a foot snow!, March 8 2014 | Dan’s Wild Wild Science Journal
Slowed global warming? New data suggests otherwise, December 23 2013 | EDF Voices
Geoengineering: A cure worse than the disease?, December 11 2013 | EDF Voices
Disinformation Spreads Confusion about the Reality of Climate Change, October 21 2013 | EDF Voices
New study projects when and where radically warmer temps will hit first, October 11 2013 | EDF Voices
Seven Things You Should Know about the U.N.'s New IPCC Climate Change Report, September 27 2013 | EDF Voices