Climate 411

What role do emissions from international shipping and aviation play in the global climate?

And what do those sectors need to do to help keep warming below 1.5 degrees Celsius?

https://www.pexels.com/photo/silhouette-of-airplane-during-sunset-99567/

Silhouette of Airplane during Sunset. Pixels.com

In advance of the United Nations Secretary General’s climate summit in September, many countries are vowing to ramp up their Paris agreement commitments to help limit the increase in global temperatures to 1.5 degrees Celsius. However, the growing emissions from two economic sectors – international shipping and international aviation – remain largely outside most of those commitments and could cause significant warming.

In a new study, researchers have found that, absent any climate action, the rising carbon dioxide emissions of international shipping and aviation could consume nearly one-third (15 to 30 percent) of our remaining “allowable warming” – the amount of additional warming that can occur before the world’s average temperature surpasses 1.5 to 2 degrees Celsius above preindustrial levels – by the end of the century.

The international shipping and aviation sectors need to implement policy solutions with integrity and extend them over time to reduce their future warming and align with the 1.5 °C global temperature threshold.

Read More »

Posted in Aviation, Greenhouse Gas Emissions, Health, Science / Comments are closed

Seis aportes del nuevo informe sobre el clima

Co-escrito por Ilissa Ocko.

Los efectos tangibles del cambio climático provocado por el hombre son cada vez más visibles. Un estudio reciente, encontró por ejemplo, que la temporada de huracanes 2017 fue más intensa como resultado de nuestro clima cambiante. Limitar los niveles de calentamiento global es esencial para frenar los impactos futuros del cambio climático, pero ¿en qué medida un calentamiento adicional de 0,5 ° C cambia nuestro mundo

El informe especial emitido anoche por el Panel Intergubernamental sobre el Cambio Climático (IPCC), considera los impactos del calentamiento global de 1.5 ° C por encima de los niveles preindustriales, en contraste con los 2 ° C, y cómo puede alcanzarse este objetivo de calentamiento inferior. El informe fue escrito por cientos de científicos provenientes de 40 países diferentes y basado en investigaciones de miles de estudios científicos

Aquí hay 6 puntos clave del nuevo informe del IPCC:

  1. Cuando se trata de calentamiento, 1.5 ° C es mucho más seguro que 2 ° C … pero aún más riesgoso que el presente.

Read More »

Posted in Basic Science of Global Warming, Science, Setting the Facts Straight / Comments are closed

Six takeaways from the new climate report

Co-authored by Ilissa Ocko. Haz click aquí para leer en español.

The tangible effects of human-induced climate change are increasingly visible. A recent study, for example, found that the 2017 hurricane season was more intense as a result of our changing climate. Limiting global warming levels is essential to curbing the future impacts of climate change, but how much does an additional half a degree Celsius warming change our world?

The special report issued last night by the Intergovernmental Panel on Climate Change (IPCC) considers the impacts of 1.5 °C global warming above preindustrial levels, in contrast to 2 °C, and how this lower warming target can be achieved.The report was written by hundreds of scientists hailing from 40 different countries and based on research from thousands of scientific studies.

Here are 6 key takeaways from the new IPCC report:

1. When it comes to warming, 1.5 °C is much safer than 2 °C…but still riskier than the present.

Limiting warming to 1.5 °C compared to 2 °C has clear and considerable benefits, such as significantly reducing the risks of water scarcity, ill-health, food insecurity, flood and drought, extreme heat, tropical cyclones, biodiversity loss, and sea level rise. Read More »

Posted in Basic Science of Global Warming, Extreme Weather, Greenhouse Gas Emissions, Science, Setting the Facts Straight / Read 2 Responses

Cherry blossoms: Predicting peak bloom in a warming world with weirder weather

USDA photo by Scott Bauer

Every March, Washington D.C. anxiously anticipates the arrival of the city’s world-famous cherry blossoms.

Millions of people flood the National Mall each year to observe the “peak bloom” – defined by the National Park Service as the day when 70 percent of the Yoshino cherry blossoms surrounding the Tidal Basin have opened.

Fluctuating weather patterns render predictions of peak bloom notoriously fickle. Experts consider it impossible to accurately estimate the cherry blossoms’ vibrant debut more than 10 days in advance. And 2018 was no exception with the peak bloom date predictions changing three times.

While bloom forecasting is a historically temperamental exercise, climate change is now further complicating matters.

As global average surface temperatures continue to rise, D.C. has felt the heat. Weather station measurements from the city have recorded a 1.6 degree Celsius per century increase in regional temperature – double the global average warming rate. The warmer winters associated with these increasing temperatures may help explain why between 1921 and 2016 peak bloom dates have shifted earlier by about five days.

A warming regional climate may influence seasonal trends, but blooms are still heavily affected by short term changes in the weather. While 2018 peak bloom was originally projected to occur between March 17th  and 20th – early in the season due to the city’s exceptionally warm February – a major snowstorm and cold temperatures persisting through March delayed the arrival until April 5th.

It may initially seem that heavy snowstorms and colder temperatures are inconsistent with climate change. However, there is a growing body of evidence that shows how changes in atmospheric circulation patterns associated with rapid warming in the Arctic may actually be linked to these dramatic cold snaps in the mid-latitudes. Increased moisture in the atmosphere from a warming world also allows for heavier precipitation events, including snowfall.

These opposing consequences of climate change – hotter temperatures with intermittent cold snaps – make the bloom schedule of D.C.’s cherry blossoms even more complex. But one thing is clear: predictions will certainly not get any easier.

Posted in Basic Science of Global Warming, Extreme Weather, News, Science / Comments are closed

The Winter Olympics on hostile terrain: How climate change is harming winter sports

The 2018 Winter Olympics have drawn to a close, and four years will pass before the world’s next opportunity to celebrate the Winter Games.

During that time, emerging athletes and innovations in training methods will inevitably change the face of the sports. But another more malevolent force of change is brewing – one that has begun to shift the landscape of the Games into hostile terrain.

As climate change continues to progress, adverse weather conditions threaten our beloved winter sports as we know them.

Familiar locations no longer suitable for outdoor sports

Researchers from the University of Waterloo recently determined that shifting weather conditions due to human-induced climate change will render 13 of the previous 19 hosts of the Winter Olympics too warm for outdoor sports by the end of the century.

Even recent host cities have faced new challenges in our changing climate. The 2014 Winter Olympics in Sochi, Russia, for example, experienced peak temperatures of 61 degrees Fahrenheit, inducing poor snow conditions that led to various delays and injuries throughout the weeks of competition.

Winter sport athletes have also begun to find their trusted off-season training locations unrecognizable. Glaciers that once provided ideal conditions for outdoor summer training have been slashed by trails of melt water and are rapidly disintegrating. U.S. athletes who previously looked to the Rocky Mountains to support their off-season practice must now travel across the globe to regions such as Switzerland, further exacerbating global warming as increased international travel pumps greenhouse gases into our atmosphere.

Accessibility diminishes for potential athletes

In the years of practice before an athlete may secure sponsorships or funding from national Olympic Committees, training and associated travel costs must be self-supported. The necessity of cross-continental travel thus not only makes tangible the effects of our changing climate, but confines potential talent pools from which Olympic athletes may emerge to socioeconomic groups able to financially support international travel.

The U.S. National Hockey League (NHL) has voiced similar concerns about athletes’ future training access. While the development of indoor rinks has allowed hockey to be played globally, the sport has traditionally relied on backyard rinks and ponds to provide players with their first introduction to skating. These more accessible venues are becoming progressively more limited as global temperatures continue to rise.

Informal backyard matches are not the only events threatened by climate change, as historic outdoor hockey events including the NHL Winter Classic, Heritage Classic, and Stadium Series may also be lost to warming conditions.

Widespread economic implications

We can shift these winter sports indoors or to higher latitudes in order to extend their lifetimes, but what happens to the regions left behind?

In the U.S. alone, snow-based recreation generates $67 billion per year and supports over 900,000 jobs. In a single year with poor snow conditions, more than $1 billion in revenue and 17,350 jobs can be lost.

Such threats are not looming in the distant future – changes are already taking shape.

As precipitation begins to fall as rain rather than snow throughout winter months, U.S. ski resorts are forced to spend more than 50 percent of their annual energy budgets on artificial snowmaking.

Canada’s average 4.5 degree Fahrenheit temperature rise between 1951 and 2005 has been matched with a 20 percent decrease in the country’s outdoor hockey season.

Future impacts are only expected to worsen, with the U.S. ski season projected to be cut in half by 2050.

Athletics are recognizing the impacts of climate change

Many competitors and athletic associations have already acknowledged the undeniable role of climate change in threatening the livelihood of these winter sports:

  • The National Ski Areas Association adopted their Climate Challenge program, aiming to help reduce greenhouse gas emissions and costs of energy use for participating ski areas.
  • Preceding the 2014 Winter Games, 75 Olympic medalists in skiing and snowboarding wrote a letter to then-President Barack Obama calling for a firmer stance on climate change mitigation and clean energy development.
  • The NHL used their 2014 sustainability reportto voice their “vested interest” in climate change, historically participating in the Paris Agreement conference discussions a year later.
  • A group of athletes and companies has come together to create a group called Protect Our Winters to educate and advocate for policies that mitigate the effects of climate change.

The threat of human-induced climate change recognized by these leaders applies to more than just winter events. Summer sports, such as golf and baseball, are also feeling the strain of our warming world.

In the spirit of the Olympic Games, we must unite as global citizens to join in our most important race – the race to defend the future of our planet.

Posted in Basic Science of Global Warming, Energy, Extreme Weather, Greenhouse Gas Emissions, Science / Comments are closed

A look back at 2017: The year in weather disasters – and the connection to climate change

Port Arthur, Texas after Hurricane Harvey. Photo: SC-HART

From hurricanes to heat waves, 2017 produced countless headlines concerning extreme weather and the devastation left in its wake.

We tend to think of extreme weather as an unpredictable, external source of destruction. When faced with catastrophes, we don’t always recognize the role we play in intensifying their impacts.

But as human-induced climate change continues to progress, extreme weather is becoming more frequent and dangerous. Without immediate greenhouse gas mitigation efforts, last year’s unprecedented disasters may soon become the norm.

Here’s a look back at the worst weather of 2017 and how these events may have been affected by climate change (and scroll down to see a timeline of the year’s worst weather).

JANUARY

  1. Massive flooding drowns California – Intense rains in January provided a much needed respite from California’s longstanding drought, but quickly tipped from satiating to inundating. Within the first 11 days of the year, California received 25 percent of the state’s average annual rainfall. Flooding and mudslides forced more than 200,000 people to evacuate their homes and caused an estimated $1.5 billion in property and infrastructure damages.

    The rapid shift from drought to flooding may be a marker of climate change. As temperatures warm, precipitation falling as rain rather than snow and expedited snow melt lead to the earlier filling of reservoirs. Such a shift increases the likelihood of both summer droughts and winter flooding, with the latter intensified by a warming atmosphere that holds more moisture and deposits greater precipitation in heavy rainfall events.

  2. Heat wave sizzles in Australia – High heat persisting overnight in the New South Wales and Southern Queensland regions of Australia induced a series of devastating heat waves throughout January and February. Following a record-setting month in which the city reached its highest ever overnight minimum temperature for December, Sydney experienced the hottest night in January since weather records began in the mid-1800s.

    Analysis has shown that these extreme summer temperatures are 10 times as likely due to the influence of climate change. With rising global temperatures, heat waves are expected to become more intense, frequent, and longer lasting. Australia was just one of many regions to experience these developing changes in 2017.

  3. Extreme heat melts the North Pole – Recent history of escalating temperatures in the Arctic could not dull the shock when temperatures near the North Pole reached more than 50 degrees Fahrenheit above regional averages this winter. The heat wave associated with this spike is not only dramatic in intensity, but frequency – heat this extreme usually occurs about once each decade, yet this event was the third recorded in just over a month.

    There exists an essential feedback between sea ice melt and Arctic warming – the more we warm, the more ice melts, lowering the region’s reflectivity of sunlight and increasing warming intensity. While these processes are usually gradual, weather variability can kick dramatic warming events into high gear. The winter heat waves experienced in the Arctic provide examples of such a combination, which may occur every few years should we reach a 2 degree Celsius global temperature rise.

FEBRUARY

  1. Drought brings risk of famine to Somalia – At a time when a staggering 6.2 million people – half of Somalia’s population – required urgent humanitarian aid, the World Health Organization released an official warning that Somalia was on the verge of famine. Such categorization would clock in as Somalia’s third famine in 25 years, the most recent of which led to the death of 260,000 people.

    After years of scarce rainfall, the nation continues to face widespread food insecurity, reduced access to clean water, and increased risk for drought-related illness. Analysis of both observational and modeling data suggests that only a small increase in the nation’s dry extremes can be attributed to climate change. However, as dry regions become progressively drier in a warming climate, similar national disasters may become increasingly common.

JUNE

  1. Extreme heat blisters the Southwestern United States – In June, an intense heat wave blazed across the Southwestern U.S. and left record high temperatures in its trail. Daily records included 127 degrees Fahrenheit in Death Valley. All-time records were reached in Las Vegas, Nevada and Needles, California at 117 degrees Fahrenheit and 125 degrees Fahrenheit, respectively. High heat triggered public health concerns and led to power outages in the California Central Valley, the buckling of highways in West Sacramento, and the cancelation of 50 flights out of Phoenix Sky Harbor Airport for American Airlines alone.

    While high temperatures are typical of the low-humidity pre-monsoon season in the Southwest, the unprecedented magnitude of these numbers and the shift towards an earlier extreme heat season may be a signal of the changing climate.

Greenland’s wildfires, as seen from space. Photo: NASA

JULY

  1. Once-icy Greenland engulfed in flames – In historically icy Greenland, wildfires have typically been of minimal concern. As a result, when the largest wildfire in the country’s history broke out at the end of July, there existed virtually no framework to assess the event’s health and infrastructure risk.

    As global temperatures rise and Greenland’s ice melts, the once barren landscape can fill with vegetation and expand the likelihood of forest fire outbreak. Climate change simultaneously lengthens and intensifies drought in the region, while increasing the likelihood of thunderstorms (a major catalyst of wildfires). Wildfires in turn intensify regional warming, as the fires’ soot deposits black carbon on the pristine snow cover, reducing the region’s reflectivity and accelerating ice sheet melt.

  2. “Lucifer” plagues Europe – Europe’s most sustained extreme heat event since the deadly 2003 heatwave (in which climate change was responsible for half of the 1050 recorded deaths) brought temperatures so reminiscent of the Inferno that locals named the event “Lucifer.” As temperatures throughout the region surpassed 104 degrees Fahrenheit, two deaths were recorded and a 15 percent increase in hospital emergency emissions was observed in Italy. The heatwave also caused pollution levels to soar and spurred wildfires throughout Portugal, just a few months after fires in Pedrógão Grande killed 60 and injured more than 250.

    Research concerning previous extreme heat in Europe has shown that climate change renders the maximum summer temperatures observed in regions such as Spain 500 times more likely than in the pre-industrial era. As global temperatures continue to rise, extreme heat will only become more familiar.

  3. Southeast Asia inundated by widespread floods – More than 41 million people were affected by massive floods and landslides that rippled through nations including Bangladesh, India, and Nepal. Losses experienced by the region included more than 1,300 lives and the displacement of 600,000. Two simultaneous pressures – the push for urbanization and neglect towards developing sustainable draining systems – renders the region highly vulnerable to these natural disasters.

    The link between the Southeast Asian monsoon season and climate change is complex, dependent upon a variety of entwined weather systems and intricate regional topography. More study is necessary to predict the influence of a changing climate on this monsoon system in order to prepare the region for impact and increase communities’ resilience.

Puerto Rico after Hurricane Irma. Photo: U.S. Customs and Border Protection

AUGUST

  1. Atlantic hurricane season leaves devastation in its wake – Deadly storms Harvey, Irma, Maria, and Ophelia dominated the news in August, killing more than 150 people and causing more than $300 billion in damages in just the United States.

    As the atmosphere holds seven percent more moisture with each one degree Celsius temperature rise, individual tropical storms can now deposit more rainfall. Recent studies have estimated that climate change rendered Harvey’s extreme rainfall three times more likely and 15 percent more intense. 27 trillion gallons of rain fell over Texas and Louisiana from Hurricane Harvey alone, setting the record for the highest tropical cyclone rainfall in the continental US. Sea level rise of 10 to 12 inches in cities such as Miami dramatically increased the destruction caused by the storm surges associated with Hurricane Irma, which were as high as 10 feet. Warming waters driving hurricane development and strength ushered in Hurricane Maria – Puerto Rico’s strongest storm in 85 years – and Hurricane Ophelia, which set records for the farthest east a major hurricane has traveled in the Atlantic and the worst storm in history to make landfall in Ireland.

OCTOBER

  1. Western United States’ forests set ablaze – Wildfires devastated Northern California this October, with more than 245,000 acres burned and 14,000 homes destroyed. Insured losses in the region amounted to more than $3 billion, but danger does not end when the fires are extinguished. The remaining ash and debris (including hazardous waste, electronic waste, and heavy metal contamination) can be spread by wind and rain, posing even further health concerns to those nearby. The increased temperatures and decreased water availability associated with climate change increases the risk of wildfires. Due to recent temperature and dryness extremes in California, even engine heat from parked cars has been cited as the source of major fires.

    The duration of the fire season has also begun to lengthen, as spring and summer temperatures rise and snowmelt begins earlier. California wildfires ignited once again in December outside of Los Angeles, creating even more destruction than those in the north. Covering an area of more than 425 square miles and displacing more than 100,000 people, the Thomas fire ranks as the second largest fire in the state’s history. While dryness and high temperatures triggering the fire’s outbreak are associated with La Niña’s current presence in the region, climate change serves to exacerbate both conditions and facilitate the dramatic losses experienced by California residents.

The direct influence of climate change on many of these events suggests that more devastating catastrophes lie ahead. But the future is not written in stone.

Should we recognize the intensification of these extreme weather events, the power to decrease greenhouse gas emissions worldwide and prevent increasingly hostile weather remains in our hands.

Posted in Arctic & Antarctic, Basic Science of Global Warming, Extreme Weather, Science / Read 2 Responses